

XAIR Expert

Instrukcja użytkownika

Spis treści

1.	Informacje ogólne	
	1.1.	Opis sterownika
	1.2.	Lista wejść i wyjść
	1.3.	Wersje językowe
2.	Inforn	nacje o bezpieczeństwie 11
3.	Opis z	łączy 12
4.	Interf	ejs użytkownika 16
	4.1.	Front sterownika
5.	Interf	ejs graficzny użytkownika 18
	5.1.	Widok główny
	5.2.	Ikona statusu sprężarki
	5.3.	Ikony błędów i ostrzeżeń
	5.4.	Bargraf
	5.5.	Poruszanie się po interfejsie graficznym użytkownika
		5.5.1. Poruszanie się po widoku głównym
		5.5.2. Podstawowe rodzaje menu
		5.5.3. Pasek boczny
		5.5.4. Ekran logowania
		5.5.5. Konfigurowanie parametrów
		5.5.6. Komunikaty ekranowe
	5.6.	Główne Menu
		5.6.1. Wyszukaj parametr
		5.6.2. Informacje
		5.6.3. Czujniki
		5.6.4. Liczniki
		5.6.5. Zdarzenia
		5.6.6. Statystyki
6.	Prefer	encje użytkownika 31
	6.1.	Dostosowanie jasności wyświetlacza 31
	6.2.	Konfiguracja wygaszacza ekranu 31
	6.3.	Konfiguracja czułości bargrafu 32
	6.4.	Dokładność wskazania ciśnienia
	6.5.	Jednostki
	6.6.	Język sterownika
	6.7.	Ustawienia daty i godziny
	6.8.	Nazwa sprężarki
7.	Param	netry użytkownika 34
	7.1.	Zmiana hasła użytkownika
8.	Algory	/tm pracy 38
	8.1.	Schemat algorytmu pracy w konfiguracji Gwiazda-Trójkąt
		8.1.1. Parametry czasowe pracy sprężarki
	8.2.	Schemat algorytmu pracy w konfiguracji Falownik

		8.2.1.	Parametry czasowe pracy sprężarki	41
		8.2.2.	Regulator PID	42
		8.2.3.	Ciśnienie zadane	42
	8.3.	Schemat	t algorytmu pracy w konfiguracji Rozruch Bezpośredni	43
		8.3.1.	Parametry czasowe pracy sprężarki	43
	8.4.	Bieg jało	wy	44
	8.5.	Metoda	kontroli dekompresji	44
9.	Ustaw	ienia prac	cy sprężarki i sterownika	45
	9.1.	Tryby pra	acy	45
		9.1.1.	Tryb automatyczny (AUTO)	45
		9.1.2.	Adaptacyjny bieg jałowy (AutoTlse)	45
		9.1.3.	Tryb ciągły (CONST)	46
	9.2.	Tryby zda	alne	46
		9.2.1.	Tryb sterowania lokalnego (LOCAL)	46
		9.2.2.	Tryb sieciowy NET	46
		9.2.3.	Tryb sterowania zdalnego REM	47
		9.2.4.	Konfiguracja trybu zdalnego REM	47
		9.2.5.	Tryb sterowania zdalnego RVM	47
		9.2.6.	Konfiguracja trybu zdalnego RVM	47
		9.2.7.	Funkcja zdalnego startu	48
		9.2.8.	Konfiguracja funkcji zdalnego startu	48
		9.2.9.	Różnice pomiędzy trybem zdalnym REM i RVM, a funkcją zdalnego startu	48
10.	Inne fu	unkcje		49
	10.1.	Funkcja	wentylatora (chłodzenie sprężarki)	49
	10.2.	Funkcja o	osuszacza	49
	10.3.	Funkcja s	spustu kondensatu	49
		10.3.1.	Konfiguracja funkcji spustu kondensatu	49
	10.4.	Funkcja /	Auto restartu	50
		10.4.1.	Konfiguracja funkcji auto restartu	50
	10.5.	Funkcja j	podgrzewacza	50
		10.5.1.	Podgrzewacz 1	50
		10.5.2.	Podgrzewacz 2	51
		10.5.3.	Dogrzewanie biegiem jałowym	51
	10.6.	Funkcja j	przełącznika temperaturowego	51
	10.7.	Przywrac	canie i zapisywanie ustawień	51
11.	Funkcj	e diagnos	styczne	53
	11.1.	Test zaw	oru bezpieczeństwa	53
12.	Licznik	i serwiso [,]	we	54
	12.1.	Restarto	wanie liczników serwisowych	55
13.	Statys	tyki		55
	13.1.	Statystyk	ki zużycia	55
	13.2.	Wykresy	,	56
14.	Planov	wanie pra	су	58
	14.1.	Konfigur	acja zdarzenia jednorazowego	58

	14.2.	Konfiguracja zdarzenia cyklicznego	59
	14.3.	Algorytm planowania pracy	60
15.	Praca	sieciowa	61
	15.1.	Widok pracy sieciowej	61
	15.2.	Uruchomienie pracy sieciowej i zmiana nastaw sterowników podrzędnych	61
	15.3.	Błędy i zdarzenia w pracy sieciowej	62
	15.4.	Algorytm pracy sekwencyjnej (SEQ)	62
	15.5.	Algorytm pracy kaskadowej (CAS)	63
	15.6.	Konfiguracja sterownika nadrzędnego	63
	15.7.	Konfiguracja sterownika podrzędnego	66
16.	Web S	erwer (System wizualizacji)	68
	16.1.	Web serwer - Opis interfejsu graficznego	68
	16.2.	Web serwer - Pulpit XAIR Expert	69
	16.3.	Web serwer - Czujniki	70
	16.4.	Web serwer - Wykresy	71
	16.5.	Web serwer - Zużycie	71
	16.6.	Web serwer - Komunikaty	71
	16.7.	Web serwer - Liczniki serwisowe	72
	16.8.	Web serwer - Praca planowana	72
	16.9.	Web serwer - Informacje	72
	16.10.	Uruchomienie i konfiguracja połączenia z web serwerem	72
17.	Ostrze	żenia i błędy	74
	17.1.	Lista ostrzeżeń sterownika XAIR Expert	74
	17.2.	Informacje o ostrzeżeniach falownika DANFOSS	77
	17.3.	Informacje o ostrzeżeniach falownika YASKAWA	78
	17.4.	Informacje o ostrzeżeniach falownika Delta	78
	17.5.	Lista błędów sterownika XAIR Expert	80
	17.6.	Błędy falownika DANFOSS	82
	17.7.	Błędy falownika YASKAWA	83
	17.8.	Błędy falownika Delta	84
18.	Dane	techniczne	88
	18.1.	Parametry elektryczne	88
	18.2.	Parametry mechaniczne	88
	18.3.	Warunki pracy	88
19.	Wymia	ary sterownika	89

Spis tabel

1	Opis wyprowadzeń wyjść cyfrowych (DIGITAL OUTPUTS)	13
2	Opis wyprowadzeń wejść cyfrowych (DIGITAL INPUTS)	13
3	Opis wyprowadzeń złącza RS-485	13
4	Opis wyprowadzeń złącza RS-485 ISO	13
5	Opis wyprowadzeń zasilania (POWER)	14
6	Opis wyprowadzeń wyjść analogowych (ANALOG OUTPUTS)	14

7	Opis wyprowadzeń wejść analogowych (ANALOG INPUTS)	14
8	Opis wyprowadzeń wejść analogowych RTD (TEMPERATURE INPUTS)	14
9	Opis wyprowadzeń złączy komunikacyjnych	14
10	Opis działania diod	16
10	Opis działania diod	17
11	Opis działania przycisków	17
14	Numery parametrów użytkownika	26
15	Parametry z zakładki "Zużycie"	29
15	Parametry z zakładki "Zużycie"	30
16	Lista parametrów użytkownika	34
16	Lista parametrów użytkownika	35
16	Lista parametrów użytkownika	36
16	Lista parametrów użytkownika	37
17	Lista parametrów czasowych pracy sprężarki	39
17	Lista parametrów czasowych pracy sprężarki	40
18	Lista parametrów czasowych pracy sprężarki	41
18	Lista parametrów czasowych pracy sprężarki	42
19	Lista parametrów czasowych pracy sprężarki	44
20	Parametry z zakładki "Zużycie"	55
20	Parametry z zakładki "Zużycie"	56
21	Lista ostrzeżeń sterownia XAIR Expert	74
21	Lista ostrzeżeń sterownia XAIR Expert	75
21	Lista ostrzeżeń sterownia XAIR Expert	76
21	Lista ostrzeżeń sterownia XAIR Expert	77
22	Lista ostrzeżeń falownika DANFOSS	77
22	Lista ostrzeżeń falownika DANFOSS	78
23	Lista ostrzeżeń falownika YASKAWA	78
24	Lista ostrzeżeń falownika Delta	78
24	Lista ostrzeżeń falownika Delta	79
24	Lista ostrzeżeń falownika Delta	80
25	Lista błędów sterownika XAIR Expert	80
25	Lista błędów sterownika XAIR Expert	81
25	Lista błędów sterownika XAIR Expert	82
26	Lista błędów falownika DANFOSS	82
26	Lista błędów falownika DANFOSS	83
27	Lista błędów falownika YASKAWA	83
27	Lista błędów falownika YASKAWA	84
28	Lista błędów falownika Delta	84
28	Lista błędów falownika Delta	85
28	Lista błędów falownika Delta	86
28	Lista błędów falownika Delta	87
29	Lista parametrów elektrycznych	88
30	Parametry mechaniczne	88
31	Dopuszczalne warunki pracy	88

Spis rysunków

1	Wygląd sterownika XAIR Expert	8
2	Wyprowadzenia elektryczne sterownika XAIR Expert (tylna ścianka obudowy)	12
3	Złącza komunikacyjne sterownika XAIR Expert (spód obudowy)	12
4	Panel frontowy sterownika XAIR Expert	16
5	Widok główny z podziałem na sekcje	18
6	Zakładka "Aktywne ostrzeżenia i błędy"	20
7	Ikona głównego menu	20
8	Główne menu sterownika XAIR Expert	21
9	Przykładowe menu ze strzałkami do nawigacji (po lewej) oraz przewijana lista (po prawej)	21
10	Pasek boczny z widocznym wskazaniem ciśnienia w sieci oraz ikonami błędu i ostrzeżenia	22
11	Wybór poziomu dostępu	22
12	Ekran autoryzacji	23
13	Kafelki z podgrupami parametrów na przykładzie parametrów pracy	23
14	Kafelki z parametrami na przykładzie podgrupy parametrów konfiguracji pracy sieciowej	23
15	Klawiatura ekranowa na przykładzie minimalnej temperatury oleju do startu	24
16	Przykład listy podstawowej (po lewej) oraz listy rozbudowanej (po prawej)	24
17	Przykład komunikatu ekranowego	25
18	Główne menu	25
19	Menu wyszukiwania parametrów użytkownika	26
20	Zakładka informacje	27
21	Menu czujników	28
22	Zakładka "Liczniki serwisowe" 1/2	28
23	Zakładka "Liczniki serwisowe" 2/2	29
24	Zakładka zdarzenia	29
25	Zakładka zużycie	30
26	Wykres ciśnienia w sieci	31
27	Algorytm sterowania silnikiem	38
28	Widok menu z ustawieniami parametrów czasowych dla konfiguracji Gwiazda-trójkąt	39
29	Algorytm sterowania silnikiem	40
30	Widok menu z ustawieniami parametrów czasowych dla konfiguracji Falownik	41
31	Nastawy ciśnienia w sieci	42
32	Algorytm sterowania silnikiem	43
33	Widok menu z ustawieniami parametrów czasowych dla konfiguracji Rozruch Bezpośredni	44
34	Widok ekranu z przywracaniem ustawień z poziomu użytkownika	52
35	Ostrzeżenie o nadpisaniu ustawień użytkownika	52
36	Widok ekranu sterownika w zakładce ręcznego sterowania zaworem Y	53
37	Ostrzeżenie o rozpoczęciu testu zaworu bezpieczeństwa	53
38	Zakładka "Liczniki serwisowe" 1/2	54
39	Zakładka "Liczniki serwisowe" 2/2	55
40	Zakładka zużycie	56
41	Wykres ciśnienia w sieci	57
42	Zakładka "Planowanie pracy" i przykładowa lista zdarzeń	58
43	Zakładka "Planowanie pracy" i przykładowa lista zdarzeń	58

44	Przykład konfiguracji zdarzenia jednorazowego	59
45	Przykład konfiguracji zdarzenia cyklicznego	60
46	Widok pracy sieciowej	61
47	Menu konfiguracji portu RS-485	64
48	Menu konfiguracji pracy sieciowej 1/3	64
49	Menu konfiguracji pracy sieciowej 2/3	65
50	Menu konfiguracji pracy sieciowej 3/3	65
51	Menu pracy sieciowej	66
52	Menu konfiguracji sprężarki podrzędnej	66
53	Menu konfiguracji portu RS-485	67
54	Menu konfiguracji trybu zdalnego	67
55	Boczny pasek nawigacji po web serwer	69
56	Górny pasek informacyjny web serwer	69
57	Web serwer widok pulpitu	70
58	Menu konfiguracji adresu IP	72
59	Zakładka "Informacje" z widocznym adresem IP oraz MAC	73
60	Rysunek obudowy sterownika XAIR Expert	89

1. Informacje ogólne

Rysunek 1: Wygląd sterownika XAIR Expert

1.1. Opis sterownika

XAIR Expert to sterownik przeznaczony dla sprężarek o mocy do 500 kW. Sterownik może współpracować ze sprężarkami działającymi w konfiguracji gwiazda-trójkąt lub wyposażonymi w falownik.

Cechy sterownika:

- Wyświetlacz dotykowy o przekątnej 4.3"
- Wbudowany web serwer
- Wykresy najważniejszych parametrów pracy sprężarki oraz tworzenie statystyk
- Funkcja nadzoru: ciśnienia w sieci, ciśnienia oleju, temperatury oleju, silnika, powietrza, poboru prądu silnika oraz punktu rosy
- Obsługa podgrzewaczy oleju, osuszacza powietrza oraz spustu kondensatu
- Możliwość dowolnej konfiguracji wejść oraz wyjść sterownika
- Funkcja automatycznego restartu pracy
- Sterowanie falownikiem z wykorzystaniem protokołu Modbus RTU (wybór standardowego falownika firm Yaskawa, Danfoss oraz Delta)
- Rozruch w trybie gwiazda-trójkąt lub bezpośredni (w przypadku sprężarek bez falownika)
- Możliwość sterowania falownikiem analogowym
- Menu parametrów serwisowych oraz użytkownika z kontrolą dostępu
- Liczniki serwisowe oraz liczniki czasu pracy

8

- Tryb pracy sieciowej obsługujący do 6 sprężarek
- Tryb pracy zdalnej (z wykorzystaniem wejścia cyfrowego)
- Planowanie pracy z podziałem na zdarzenia cykliczne oraz jednorazowe, łącznie do 28 zdarzeń
- Możliwość aktualizacji oprogramowania przez port USB

1.2. Lista wejść i wyjść

- Sterownik wyposażony jest w 4 wejścia RTD do obsługi rezystancyjnych czujników temperatury i posiada możliwość niezależnej konfiguracji każdego z wejść do wybranego czujnika (PT100, PT1000, KTY84, PTC). Z wykorzystaniem wejść temperaturowych RTD sterownik może kontrolować następujące parametry:
 - Temperatura oleju
 - Temperatura silnika
 - Temperatura powietrza na wyjściu sprężarki
 - Temperatura otoczenia
- 2. Sterownik wyposażony jest w 3 wejścia analogowe do obsługi czujników 4-20 mA. Zakres pomiarowy może być skonfigurowany z poziomu sterownika. Obsługiwane parametry to:
 - Ciśnienie w sieci
 - Ciśnienie oleju
 - Czujnik punktu rosy
 - Ciśnienie wtrysku oleju
 - ΔP separatora
- Sterownik wyposażony jest w 1 wejście analogowe do obsługi przekładnika prądowego w standardzie 5
 A. Prąd uzwojenia pierwotnego może być dowolnie skonfigurowany z poziomu sterownika.
- 4. Sterownik wyposażony jest w 8 wejść cyfrowych do obsługi czujników lub sygnałów binarnych z możliwością konfiguracji domyślnej logiki (normalnie otwarty/normalnie zamknięty) dla każdego wejścia niezależnie. Obsługiwane czujniki lub sygnały to:
 - Czujnik ssania
 - Gotowość osuszacza
 - Zdalny start-stop
 - Zdalny sygnał dociążenia-odciążenia
 - Stan gotowości
 - Zatrzymanie awaryjne
 - Asymetria zasilania faz
 - Sygnał błędu kolejności faz
 - Sygnał błędu termika
 - Sygnał błędu filtra powietrza
 - Sygnał błędu filtra oleju
 - Sygnał błędu separatora

- Sygnał błędu wentylatora
- Sygnał błędu falownika
- 5. Sterownik wyposażony jest w 9 konfigurowalnych wyjść cyfrowych (przekaźnikowych), w tym:
 - 4 wyjścia ze wspólnym potencjałem
 - 4 wyjścia z niezależnym potencjałem
 - 1 wyjście NO/NC z niezależnym potencjałem

Funkcje, które mogą być skonfigurowane na każdym z wyjść to:

- Główne zasilanie
- Gwiazda
- Trójkąt
- Zawór Y
- Spust kondensatu
- Sygnał start-stop dla falownika
- Wentylator
- Osuszacz
- Podgrzewacz 1
- Podgrzewacz 2
- Ostrzeżenie
- Błąd
- Stan ostrzeżenia lub błędu
- Gotowy
- Pracuje
- Sprężanie
- Przegląd
- Ostrzeżenie od wysokiego punktu rosy
- Ostrzeżenie od niskiego punktu rosy
- 6. Sterownik wyposażony jest w 2 gniazda USB oraz 1 gniazdo Ethernet

1.3. Wersje językowe

Sterownik XAIR Expert posiada 7 wersji językowych

- Polską
- Angielską
- Niderlandzką
- Hiszpańską
- Francuską
- Niemiecką
- Rosyjską

Istnieje możliwość przygotowania innych wersji językowych w porozumieniu z producentem sterownika.

2. Informacje o bezpieczeństwie

Przed montażem i uruchomieniem sterownika należy zapoznać się z instrukcją obsługi oraz warunkami gwarancji. Nieprawidłowy montaż oraz obsługa niezgodna z instrukcją spowodują utratę gwarancji.

Wszelkie prace przyłączeniowe oraz montażowe muszą być wykonywane przy odłączonym napięciu zasilania.

Prace montażowe powinny być wykonywane przez autoryzowany serwis lub uprawniony personel.

Aby zachować zgodność z normami bezpieczeństwa, zacisk PE sterownika powinien być podłączony do przewodu ochronnego PE.

Eksploatacja sterownika bez zainstalowanej obudowy jest niedozwolona, ponieważ grozi to porażeniem prądem.

Narażanie sterownika na zalanie wodą lub eksploatacja w warunkach nadmiernej wilgotności może spowodować jego uszkodzenie.

Przed uruchomieniem należy sprawdzić poprawność podłączenia, zgodnie ze schematem połączeniowym zamieszczonym w instrukcji obsługi.

Przed uruchomieniem sterownika należy sprawdzić, czy napięcie zasilania spełnia wymagania zamieszczone w instrukcji obsługi.

Wszelkie naprawy mogą być dokonywane tylko przez serwis producenta. Naprawa wykonana przez osobę nieupoważnioną skutkuje utratą gwarancji.

3. Opis złączy

Rysunek 2: Wyprowadzenia elektryczne sterownika XAIR Expert (tylna ścianka obudowy)

Rysunek 3: Złącza komunikacyjne sterownika XAIR Expert (spód obudowy)

MIKROEL[®]

Tabela 1: Opis wyprowadzeń wyjść cyfrowych (DIGITAL OUTPUTS)

Nazwa	Opis
COM 1-4	Wspólne wyprowadzenie wyjść przekaźnikowych od 1 do 4
REL1	Konfigurowalne wyjście przekaźnikowe 1
REL2	Konfigurowalne wyjście przekaźnikowe 2
REL3	Konfigurowalne wyjście przekaźnikowe 3
REL4	Konfigurowalne wyjście przekaźnikowe 4
REL5	Para wyjść konfigurowalnego przekaźnika 5
REL6	Para wyjść konfigurowalnego przekaźnika 6
REL7	Para wyjść konfigurowalnego przekaźnika 7
REL8	Para wyjść konfigurowalnego przekaźnika 8
REL9 NC	Styk rozwierny (normalnie zamknięty) przekaźnika 9
REL9 COM	Konfigurowalne wyjście przekaźnika 9
REL9 NO	Styk zwierny (normalnie otwarty) przekaźnika 9

Tabela 2: Opis wyprowadzeń wejść cyfrowych (DIGITAL INPUTS)

Nazwa	Opis
+24V	Wyjście wewnętrznego napięcia odniesienia
DI1	Konfigurowalne wejście cyfrowe 1
DI2	Konfigurowalne wejście cyfrowe 2
DI3	Konfigurowalne wejście cyfrowe 3
DI4	Konfigurowalne wejście cyfrowe 4
DI5	Konfigurowalne wejście cyfrowe 5
DI6	Konfigurowalne wejście cyfrowe 6
DI7	Konfigurowalne wejście cyfrowe 7
DI8	Konfigurowalne wejście cyfrowe 8

Tabela 3: Opis wyprowadzeń złącza RS-485

Nazwa	Opis
A	Linia nieodwracająca interfejsu RS-485
В	Linia odwracająca interfejsu RS-485
GND	Masa interfejsu RS-485

Tabela 4: Opis wyprowadzeń złącza RS-485 ISO

Nazwa	Opis
GND	Masa izolowanego interfejsu RS-485
В	Linia odwracająca izolowanego interfejsu RS-485
А	Linia nieodwracająca izolowanego interfejsu RS-485

Tabela 5: Opis wyprowadzeń zasilania (POWER)

Nazwa	Opis
PE	Złącze PE
VAC	Napięcie zasilania sterownika (przemienne 24 V)
VAC	Napięcie zasilania sterownika (przemienne 24 V)

Tabela 6: Opis wyprowadzeń wyjść analogowych (ANALOG OUTPUTS)

Nazwa	Opis
GND	Masa wyjścia analogowego 1
AO1	Wyjście analogowe 1
GND	Masa wyjścia analogowego 2
AO2	Wyjście analogowe 2

Tabela 7: Opis wyprowadzeń wejść analogowych (ANALOG INPUTS)

Nazwa	Opis
+24V	Wyjście zasilania 24 VDC
+24V	Zasilanie wejścia analogowego 1
Al1	Wejście analogowe 1
+24V	Zasilanie wejścia analogowego 2
AI2	Wejście analogowe 2
+24V	Zasilanie wejścia analogowego 3
AI3	Wejście analogowe 3
GND	Masa wejścia analogowego MC1
MC1	Wejście analogowe MC1 do pomiaru prądu silnika
GND	Zacisk masy

Tabela 8: Opis wyprowadzeń wejść analogowych RTD (TEMPERATURE INPUTS)

Nazwa	Opis
GND	Masa rezystancyjnego czujnika temperatury 1
RTD1	Wejście rezystancyjnego czujnika temperatury 1
GND	Masa rezystancyjnego czujnika temperatury 2
RTD2	Wejście rezystancyjnego czujnika temperatury 2
GND	Masa rezystancyjnego czujnika temperatury 3
RTD3	Wejście rezystancyjnego czujnika temperatury 3
GND	Masa rezystancyjnego czujnika temperatury 4
RTD4	Wejście rezystancyjnego czujnika temperatury 4

Tabela 9: Opis wyprowadzeń złączy komunikacyjnych

Nazwa	Opis
USB 1	Złącze USB
USB 2	Złącze USB
ETH	Złącze ethernet (RJ45)

Sterownik XAIR Expert jest wyposażony w zacisk uziemiający obudowę sterownika, który znajduje się pod jedną ze śrub obudowy.

4. Interfejs użytkownika

4.1. Front sterownika

Na panelu frontowym znajdują się:

- 2 przyciski
- 8 diod informujących o statusie sprężarki
- Ekran dotykowy wyświetlający interfejs graficzny użytkownika

Rysunek 4: Panel frontowy sterownika XAIR Expert

Tabela 10: Opis działania diod

Dioda	Kolor	Zachowanie diody
START	Zielona	Stałe - Silnik pracuje(sprężanie, bieg jałowy)
		Pulsacyjne - rozruch silnika
STOP	Czerwona	Stałe - Silnik nie pracuje
		Pulsacyjne - sprężarka w trakcie zatrzymywania lub oczekiwania na spa-
		dek ciśnienia
СМР	Niebieska	Stałe - Trwa sprężanie
LSE	Zielona	Stałe - Silnik pracuje na biegu jałowym
NET	Biała	Stałe - Praca sieciowa włączona
REM	Biała	Stałe - Sterownik w trybie pracy zdalnej

Tabela 10: Opis działania diod

Dioda	Kolor	Zachowanie diody	
WRN	Żółta	Stałe - Aktywne ostrzeżenie na sterowniku	
		Pulsacyjne - minął termin przeglądu	
ERR	Czerwona	Pulsacyjne - Aktywny błąd na sterowniku	

Tabela 11: Opis działania przycisków

Przycisk	Funkcja
START	Zezwolenie na pracę sprężarki
STOP	Zatrzymanie pracy sprężarki

5. Interfejs graficzny użytkownika

5.1. Widok główny

Rysunek 5: Widok główny z podziałem na sekcje

Opis poszczególnych sekcji:

- 1. Wskazanie ciśnienia w sieci, nastawy ciśnienia oraz bargraf
- 2. Ikona głównego menu
- 3. Ikony aktywnych błędów oraz ostrzeżeń
- 4. Ikona aktualnego stanu sprężarki
- 5. Ikona planowania pracy (praca wg. kalendarza)
- 6. Ikona pracy sieciowej
- 7. Aktualna data i godzina
- 8. Pole wyświetlające komunikaty tekstowe dotyczące statusu sprężarki
- 9. Pole wyświetlające podstawowe parametry pracy sprężarki

Poszczególne elementy widoku głównego w sterowniku są jednocześnie skrótami do innych sekcji interfejsu graficznego. Aby ich użyć należy kliknąć na dany element na ekranie.

Elementy widoku głównego oraz sekcje do jakich prowadzą:

- Wskazanie ciśnienia w sieci wykres ciśnienia w sieci
- Nastawy ciśnienia ustawienia ciśnienia w sieci
- Ikona planowania pracy menu planowania pracy
- Aktualna data i godzina ustawienia daty i godziny
- Ikona pracy sieciowej widok pracy sieciowej (tylko w przypadku sterownika pracującego jako nadrzędny)

5.2. Ikona statusu sprężarki

Ikona statusu widoczna na pasku bocznym interfejsu użytkownika informuje o aktualnym statusie sprężarki.

5.3. Ikony błędów i ostrzeżeń

Ikony błędów i ostrzeżeń informują o błędach i ostrzeżeniach, które występują obecnie na sterowniku lub wystąpiły w przeszłości, mogą różnić się wizualnie, w zależności od miejsca na interfejsie graficznym.

5.4. Bargraf

Bargraf, dostępny na widoku głównym interfejsu graficznego, informuje o szybkości zmian ciśnienia w sieci. Informacja o szybkości przyrostu lub spadku ciśnienia w sieci jest przedstawiona w postaci kolorowych prostokątów występujących w obszarze paska bargrafu. Im więcej prostokątów jest widocznych, tym szybkość zmian jest wyższa. W przypadku wzrostu ciśnienia prostokąty mają kolor zielony, a w przypadku spadku czerwony. Czułość bargrafu można dostosować (Preferencje użytkownika -> Wyświetlanie -> Czułość bargrafu) w zakresie 0.02-0.3 bar/s, wartość ta odnosi się do pojedynczego prostokąta, np. dla ustawionej czułości 0.3 bar/s, 3 pełne zielone prostokąty będą oznaczać 0.9 bar/s.

5.5. Poruszanie się po interfejsie graficznym użytkownika

Obsługa interfejsu graficznego użytkownika odbywa się z wykorzystaniem ekranu dotykowego. Poniżej opisane zostały podstawowe zasady poruszania się po interfejsie graficznym sterownika. Bardziej szczegółowe opisy zawarte zostały w rozdziałach dedykowanych poszczególnym funkcjom.

5.5.1. Poruszanie się po widoku głównym

Z poziomu widoku głównego można przejść do zakładki "Aktywne ostrzeżenia i błędy" poprzez kliknięcie na ikonę silnika lub błędu/ostrzeżenia. Aby wrócić do widoku głównego należy kliknąć przycisk "Zamknij".

Rysunek 6: Zakładka "Aktywne ostrzeżenia i błędy"

Ikona listy w lewym górnym rogu ekranu otwiera główne menu sterownika. Po otworzeniu się głównego menu ikona listy zostaje zastąpiona ikoną umożliwiają powrót do poprzedniej zakładki. Mechanizm ten dotyczy całego interfejsu.

Rysunek 7: Ikona głównego menu

Główne menu sterownika zawiera ikony dostępnych podzakładek, jednocześnie umożliwiając użytkownikowi ciągły podgląd wybranych parametrów widoku głównego. Ikony pozwalające na przejście do poszczególnych podzakładek występują także w innych miejscach interfejsu użytkownika, również pod postacią prostokątnych kafelków z opisem.

Rysunek 8: Główne menu sterownika XAIR Expert

5.5.2. Podstawowe rodzaje menu

Interfejs użytkownika posiada 2 podstawowe rodzaje menu (zakładek), różniące się sposobem ich przeglądania. Poruszanie się po podstronach pierwszego menu odbywa się przy pomocy strzałek wyświetlonych na ekranie sterownika. W zależności od ilości wyświetlanych ikon, strzałki mogą znajdować się na dole lub po prawej stronie ekranu. Pomiędzy strzałkami znajduje się numer aktualnie przeglądanej strony oraz całkowita liczba stron. Np. 2/3 oznacza, że przeglądana jest podstrona 2 z 3. Drugi typ menu to przewijana lista. Po prawej stronie ekranu widoczny jest biały prostokąt z niebieskim bloczkiem reprezentującym aktualnie przeglądaną pozycję listy. Rozmiar niebieskiego bloczka odpowiada wielkości listy. Im jest mniejszy tym na liście znajduje się więcej pozycji. Przeciągnięcie palcem po ekranie w górę lub w dół, bez jego odrywania, umożliwia poruszanie się po liście. Dynamiczne wykonanie wcześniej opisanego gestu skutkuje przesunięciem większej liczby wierszy. Możliwe jest także nawigowanie z wykorzystaniem niebieskiego bloczka. Należy kliknąć obszar na białym prostokącie w celu przejścia do wybranego miejsca listy.

Rysunek 9: Przykładowe menu ze strzałkami do nawigacji (po lewej) oraz przewijana lista (po prawej)

5.5.3. Pasek boczny

Prostokątny pasek po lewej stronie ekranu jest widoczny w każdym miejscu interfejsu graficznego użytkownika. Widoczna na nim ikona silnika informuje o statusie sprężarki i pozwala przejść do zakładki z aktywnymi błędami i ostrzeżeniami, bez konieczności cofania się do widoku głównego. Ikona menu, zamiennie z ikoną powrotu, umożliwia nawigowanie po interfejsie graficznym. Na pasku bocznym wyświetlane jest aktualne ciśnienie w

sieci, również w momentach kiedy użytkownik jest poza widokiem głównym. W zależności od występujących aktualnie na sterowniku błędów i ostrzeżeń, na pasku pojawiają się ikony błędu i ostrzeżenia.

Rysunek 10: Pasek boczny z widocznym wskazaniem ciśnienia w sieci oraz ikonami błędu i ostrzeżenia

5.5.4. Ekran logowania

Niektóre elementy interfejsu wymagają autoryzacji użytkownika lub serwisu. W celu jej dokonania należy wybrać odpowiednią ikonę poziomu dostępu, a następnie wprowadzić hasło, zatwierdzając przyciskiem "LOGIN". Wprowadzone hasło jest zakodowane pod postacią kropek, a ikona oka po prawej stronie umożliwia sprawdzenie wprowadzonego hasła. Podgląd jest widoczny tak długo, jak długo użytkownik naciska ikonę.

Rysunek 11: Wybór poziomu dostępu

<	Hasło użytkownika		1	2	3
		۲	4	5	6
A			7	8	9
6.5	LOGIN			0	\bigotimes

Rysunek 12: Ekran autoryzacji

5.5.5. Konfigurowanie parametrów

Interfejs graficzny użytkownika przechowuje parametry w podgrupach, które wyświetlane są w postaci kafelków z opisami. Aby przejść do wybranej podgrupy należy nacisnąć na obszar kafelka.

(Parametry pracy		
	1/3		
Þ			
7.4			
() 7.4 bar	1/3		

Rysunek 13: Kafelki z podgrupami parametrów na przykładzie parametrów pracy

Po przejściu do wybranej podgrupy, parametry wyświetlone zostaną w formie kafelków z nazwą parametru i jego obecną wartością (w niebieskim polu na prawym końcu kafelka). Aby przejść do edycji parametru należy kliknąć na pole z jego wartością.

रि	Praca sieciowa / Konfiguracja				
	Tryb zdalny	LOCAL			
	Praca jako sprężarka master	Wyłączony	(\uparrow)		
	Praca sieciowa aktywna	Wyłączony	1/3		
Þ	Algorytm pracy sieciowej	SEQ	\checkmark		
9.8 bar	Liczba sprężarek slave	4	_		

Rysunek 14: Kafelki z parametrami na przykładzie podgrupy parametrów konfiguracji pracy sieciowej

Konfigurowanie wybranego parametru odbywa się, w zależności od jego typu, poprzez wprowadzanie wartości z poziomu klawiatury ekranowej lub poprzez wybranie pozycji z predefiniowanej listy. Klawiatura ekranowa może się różnić w zależności od edytowanego parametru, dopuszczając wprowadzenie wartości ujemnych (poprzez użycie symbolu zmiany znaku na ujemny). Po wprowadzeniu nowej wartości parametru, operację należy zatwierdzić klikając przycisk "ZAPISZ". Pod polem, w którym wyświetlana jest wpisana wartość, wyświetlany jest dopuszczalny zakres parametru. Aby anulować zmianę, zamiast zapisywać nową wartość, należy kliknąć ikonę powrotu.

Rysunek 15: Klawiatura ekranowa na przykładzie minimalnej temperatury oleju do startu

Drugi sposób edycji parametrów to wybór wartości z listy. Listy dzielą się na podstawowe i rozbudowane. Podstawowe oferują wybór pomiędzy dwoma wartościami, np. "Włącz" i "Wyłącz". Obecnie wybrana wartość zaznaczona jest niebieską ramką oraz ciemniejszym kolorem tła. Lista rozbudowana oferuje wybór spośród wielu wartości i może mieć swoje podstrony. Obecnie wybrana wartość jest na niej oznaczona niebieską ramką oraz kwadratową ikoną fajki. Aby wyjść z trybu edycji listy podstawowej lub rozbudowanej należy zaznaczyć jedną z opcji lub kliknąć dowolne inne miejsce na interfejsie użytkownika, który zostaje przyciemniony na czas edycji.

	Funkcja spustu kondensatu			Wykres	
	Funkcja spustu kondensatu	Wyłącz		Ciśnienie w sieci w ostatniu dniu	godzina
	Okres otwierania spustu	Włącz min		7.2	doba 🗹
	Czas otwarcia spustu	3 s		6.0	tydzień
			P	3.6	
6.5 bar			6.5 bar	1.2 0.0 12:00 16:00 20:00	

Rysunek 16: Przykład listy podstawowej (po lewej) oraz listy rozbudowanej (po prawej)

5.5.6. Komunikaty ekranowe

Sterownik wyświetla komunikaty skierowane do użytkownika w prawym górnym rogu ekranu, w formie okienka z treścią komunikatu. Okienko komunikatu zamyka się klikając dowolne miejsce na ekranie. Komunikaty mają charakter pomocniczy i informują np. o wprowadzeniu nieprawidłowego hasła lub o postępie aktualizacji. Ich wystąpienia nie są archiwizowane w pamięci sterownika.

Rysunek 17: Przykład komunikatu ekranowego

5.6. Główne Menu

Aby przejść do głównego menu należy kliknąć w jego ikonę na poziomie widoku głównego. Następnie możliwe jest wybranie dostępnych podzakładek.

Lista podzakładek:

- Menu parametrów
- Wyszukaj parametr
- Informacje
- Czujniki
- Liczniki
- Zdarzenia
- Statystyki

Rysunek 18: Główne menu

5.6.1. Wyszukaj parametr

Zakładka "Wyszukaj parametr" pozwala na przejście do konkretnego parametru lub grupy parametrów poprzez podanie jego numeru w wyszukiwarce. Numery parametrów odpowiadają sterownikom serii MS-885 oraz MS-887 VSD.

Rysunek 19: Menu wyszukiwania parametrów użytkownika

Nr	Parametr
1	Planowanie pracy
2	Liczniki serwisowe
3	Wybór języka
4	Włączenie pracy sieciowej
5	Czas rotacji granic ciśnień podczas pracy
6	Wyświetlanie informacji o sterowniku
7 i 18	Podgląd listy zdarzeń
8 i 25	Ustawienia RS-485
11	Ustawienia godziny
12	Ustawienia daty
15	Czas pracy luzem po przekroczeniu górnej nastawy ciśnienia, po
	którym sprężarka przechodzi w czas oczekiwania
18	Podgląd listy zdarzeń
25	Ustawienia RS-485
26	Wybór algorytmu pracy sieciowej
27	Menu pracy sieciowej
28	Menu pracy sieciowej
30	Ustawienia osuszacza
40	Ustawienia spustu kondensatu
51	Ustawienia jasności wyświetlacza oraz wygaszacza ekranu
61	Włączenie automatycznej regulacji czasu biegu luzem
90	Ustawienia Auto restartu sterownika
111	Przywrócenie ustawień użytkownika
423	Ustawienie hasła użytkownika
500	Test zaworu bezpieczeństwa

Tabela 14: Numery parametrów użytkownika

5.6.2. Informacje

Zakładka "Informacje" zawiera podstawowe dane na temat sprężarki oraz sterownika. Znajduje się tutaj również przycisk do uruchomienia procedury aktualizacji oprogramowania sterownika.

Lista danych przechowywanych w zakładce informacje:

- Wersja oprogramowania
- Numer seryjny sprężarki
- Numer seryjny sterownika
- Informacja o producencie sprężarki
- Sposób rozruchu sprężarki
- Adres IP sterownika
- Adres MAC sterownika

Rysunek 20: Zakładka informacje

5.6.3. Czujniki

W zakładce "Czujniki" dostępny jest podgląd aktualnych wartości pomiarów dokonywanych przez sterownik oraz odczytanych z falownika. Podgląd jest dostępny tylko dla aktywnych czujników, skonfigurowanych w parametrach wejść oraz wyjść. Każda z wartości ma podaną jednostkę w jakiej jest wyświetlana, z wyjątkiem temperatury silnika dla czujnika PTC (w takim przypadku użytkownik może odczytać temperaturę poprawną oznaczoną symbolem "", lub niepoprawną oznaczoną "**X**").

Lista wartości możliwych do odczytania w zakładce czujniki:

- Ciśnienie w sieci
- Ciśnienie oleju

- Temperatura oleju
- Temperatura silnika
- Temperatura powietrza
- Temperatura otoczenia
- Prąd silnika
- Moc silnika
- Punkt rosy
- Częstotliwość wyjściowa

Rysunek 21: Menu czujników

5.6.4. Liczniki

Zakładka "Liczniki" pozwala na podgląd aktualnych wartości liczników serwisowych oraz ich modyfikację. Każdy z liczników przedstawiony jest w formie kafelka zawierającego informacje o dacie następnego przeglądu i pozostałej liczbie godzin pracy. Licznik serwisowy może być skonfigurowany na obie z wcześniej wymienionych wartości lub tylko na jedną z nich. W takim przypadku wyświetla się tylko skonfigurowana wartość. Jeżeli licznik jest nieaktywny, na jego kafelku widoczna jest ikona z napisem "WYŁ."

	Liczniki serwisowe			
	Licznik przeglądu generalnego			
	Licznik wymiany oleju	1/2		
Ð	Licznik filtra oleju			
7.6 bar	Licznik filtra powietrza			

Rysunek 22: Zakładka "Liczniki serwisowe" 1/2

Rysunek 23: Zakładka "Liczniki serwisowe" 2/2

5.6.5. Zdarzenia

Zakładka "Zdarzenia" pozwala na sprawdzenie historii błędów oraz ostrzeżeń które wystąpiły na sterowniku. Do każdego zdarzenia przypisywane są: data i godzina wystąpienia, treść oraz symbol. Lista archiwizuje 200 zdarzeń, a po przekroczeniu tej liczby najstarsze zdarzenia są usuwane.

(Zdarzenia				
	14-02-2022	14:10:39	() Awaryjne zatrzymanie		
	14-02-2022	14:10:33	🕕 Błąd termika		
	14-02-2022	14:06:11	 Zbyt wysokie ciśnienie sieci 		
	14-02-2022	14:06:08	🛆 Wysokie ciśnienie sieci		
<u>م</u>	14-02-2022	14:03:57	① Zwarcie czujnika temperatury oleju		
	14-02-2022	14:03:42	🕕 Za wysoka temperatura oleju		
9.8	14-02-2022	14:03:16	\land Za wysoka temperatura oleju		
bar	14-02-2022	14:02:52	 Za wvsoka temperatura oleiu 		

Rysunek 24: Zakładka zdarzenia

5.6.6. Statystyki

Sterownik XAIR Expert agreguje pomiary z czujników i informacje na temat pracy sprężarki oraz przedstawia je w postaci statystyk (które podzielone są na 2 kategorie: zużycie oraz wykresy). W zakładce "Zużycie" przechowywane są informacje na temat czasu oraz cyklów pracy sprężarki. Rodzaje danych dotyczących obciążenia są różne dla sprężarek z rozruchem w układzie gwiazda-trójkąt oraz sprężarek falownikowych.

Nazwa parametru	Opis parametru
Całkowity czas pracy	Całkowity czas pracy silnika
Czas pracy pod obciążeniem	Całkowity czas sprężania
Średnie obciążenie	Stosunek czasu pracy pod obciążeniem do całkowitego czasu pra-
	су

Tabela 15: Parametry z zakładki "Zużycie"

	Tabela 15:	Parametry	z zakładki	"Zużycie"
--	------------	-----------	------------	-----------

Nazwa parametru	Opis parametru		
Liczba rozruchów silnika	Całkowita liczba rozruchów silnika		
Średnia ilość rozruchów silnika	Średnia liczba rozruchów silnika na godzinę		
Liczba załączeń zaworu Y	Całkowita liczba załączeń zaworu Y		
Obciążenie 80% - 100% ^F	Całkowity czas pracy w danym przedziale obciążenia		
Obciążenie 60% - 80% ^F	Całkowity czas pracy w danym przedziale obciążenia		
Obciążenie 40% - 60% ^F	Całkowity czas pracy w danym przedziale obciążenia		
Obciążenie 20% - 40% ^F	Całkowity czas pracy w danym przedziale obciążenia		

^F-Parametr dostępny tylko dla sprężarek wyposażonych w falownik

र	Zużycie	Zużycie			
	Całkowity czas pracy	15 h	ZMIEŃ		
	Czas pracy pod obciążeniem	14 h	ZMIEŃ		
	Średnie obciążenie	93.33 %			
	Liczba rozruchów silnika	150	ZMIEŃ		
Ð	Średnia ilość rozruchów silnika	10.00 / h			
6.5	Liczba załączeń zaworu Y	128	ZMIEŃ		
bar					

Rysunek 25: Zakładka zużycie

Sterownik tworzy wykresy z wybranych danych z okresów: ostatnia godzina, ostatnia doba, ostatni tydzień. Zakres podglądu może być dowolnie ustawiany przez użytkownika, niezależnie dla każdego z wykresów.

Lista danych z których generowane są wykresy:

- Ciśnienie w sieci
- Temperatura oleju
- Temperatura silnika
- Temperatura powietrza
- Prąd silnika
- Częstotliwość wyjściowa

Rysunek 26: Wykres ciśnienia w sieci

6. Preferencje użytkownika

Użytkownik ma możliwość konfiguracji swoich preferencji w zakładce "Preferencje użytkownika": **Parametry użytkownika -> Preferencje użytkownika**. Znajduje się tam zbiór ustawień, które nie mają bezpośredniego przełożenia na pracę sprężarki, mają natomiast wpływ na komfort obsługi sterownika przez użytkownika.

Lista podzakładek:

- Wyświetlanie
- Jednostki
- Język
- Data i godzina
- Nazwa sprężarki

6.1. Dostosowanie jasności wyświetlacza

Jasność wyświetlacza w sterowniku można dostosować przechodząc do zakładki: **Parametry użytkownika -> Preferencje użytkownika -> Wyświetlanie**. Poziom jasności wybierany jest poprzez zmianę pozycji suwaka, minimalny dostępny poziom jasności to 0%, maksymalny to 100%

6.2. Konfiguracja wygaszacza ekranu

Wygaszacz ekranu można włączyć lub wyłączyć przechodząc do zakładki:

Parametry użytkownika -> Preferencje użytkownika -> Wyświetlanie.

Ustawiając przełącznik "Wygaszacz ekranu" odpowiednio w pozycji "Wł." lub "Wył.". Parametr "Opóźnienie wygaszacza ekranu" definiuje liczbę sekund, po jakiej wygaszacz ekranu się włączy w przypadku bezczynności.

6.3. Konfiguracja czułości bargrafu

Czułość bargrafu wyświetlanego na widoku głównym sterownika można skonfigurować przechodząc do zakładki:

Parametry użytkownika -> Preferencje użytkownika -> Wyświetlanie.

Jednostka w jakiej konfigurowana jest czułość bargrafu to bar/s, oznaczające przyrost lub spadek ciśnienia jaki przedstawiany jest przez jedną podziałkę bargrafu.

Dostępny zakres konfiguracji to 0.02 bar/s do 0.2 bar/s.

6.4. Dokładność wskazania ciśnienia

Dokładność wskazania ciśnienia można skonfigurować przechodząc do zakładki:

Parametry użytkownika -> Preferencje użytkownika -> Wyświetlanie.

Do wyboru jest zakres z jednym miejscem po przecinku lub dwoma, wybrany zakres widoczny jest w każdym miejscu interfejsu użytkownika, za wyjątkiem zakładki "Czujniki", w której ciśnienie zawsze wyświetlane jest z dokładnością do 2 miejsc po przecinku.

6.5. Jednostki

Sterownik umożliwia konfigurację jednostek, w których wyświetlane są wartości odczytane z poszczególnych czujników, konfiguracja jest dostępna w zakładce:

Parametry użytkownika -> Preferencje użytkownika -> Jednostki.

Lista jednostek temperatury:

- °C
- °F

Lista jednostek ciśnienia:

- bar
- psi

6.6. Język sterownika

W celu wybrania innej wersji językowej interfejsu użytkownika należy przejść do zakładki: Parametry użytkownika -> Preferencje użytkownika -> Język.

Lista wersji językowych:

- Polska
- Angielska
- Niderlandzka
- Hiszpańska
- Francuska
- Niemiecka
- Rosyjska

6.7. Ustawienia daty i godziny

W celu ustawienia poprawnej daty i godziny na sterowniku należy przejść do zakładki:

Parametry użytkownika -> Preferencje użytkownika -> Data i godzina.

Istnieje też możliwość użycia skrótu, klikając na wskazanie daty i godziny z poziomu widoku głównego sterownika. Sterownik umożliwia także zmianę formatu wyświetlania godziny na 12 godzinny.

6.8. Nazwa sprężarki

Sterownik umożliwia nadanie nazwy własnej sprężarce, umożliwia to szybką identyfikację sprężarki z poziomu Web serwera. Aby wprowadzić nazwę sprężarki należy przejść do zakładki:

Parametry użytkownika -> Preferencje użytkownika -> Nazwa sprężarki.

Następnie wprowadzić nazwę przy pomocy klawiatury ekranowej.

MIKROEL®

7. Parametry użytkownika

Podstawowe hasło użytkownika: 0000

Parametry użytkownika dostępne są w zakładce "Menu parametrów". Dostęp wymaga wprowadzenia hasła użytkownika, domyśle hasło to "0000". Parametry pogrupowane są w różne podmenu. Część parametrów dostępna jest jedynie w trybie podglądu. Użytkownik może sprawdzić wartość danego parametru, ale nie może go edytować. Podczas próby modyfikacji parametru dostępnego jedynie do podglądu, sterownik wyświetli komunikat ekranowy o treści "Za niski poziom uprawnień do zmiany tego parametru". Widoczność oraz zakresy poszczególnych parametrów mogą być zależne od wartości innych parametrów współzależnych.

Nazwa	Modyfikacja	Zakres	Lokalizacja
Jasność wyświetlacza	Tak	0-100%	Preferencje użytkownika -> Wy-
			świetlanie
Wygaszacz ekranu	Tak	Wł.; Wył.	Preferencje użytkownika -> Wy-
			świetlanie
Opóźnienie wygaszacza ekranu	Tak	≥ 0 s	Preferencje użytkownika -> Wy-
			świetlanie
Czułość bargrafu	Tak	0.02-0.3 bar/s	Preferencje użytkownika -> Wy-
			świetlanie
Liczba miejsc po przecinku w wyświetlanych po-	Tak	1; 2	Preferencje użytkownika -> Wy-
miarach cisnienia		00.05	swietlanie
Jednostka temperatury	lak	°C; °F	Preferencje uzytkownika -> Jed-
	T-1-	han nat	nostki Drafanana in substitus variati
Jednostka cisnienia	Так	bar; psi	preferencje uzytkownika -> jed-
lezyk	Tak	nolski: angiel-	Preferencie użytkownika -> lezyk
56211		ski: niemiec-	
		ki; rosyjski;	
		francuski; ni-	
		derlandzki;	
		hiszpański	
Czas	Tak	hh:mm	Preferencje użytkownika -> Data i
			godzina
Data	Tak	dd-mm-rrrr	Preferencje użytkownika -> Data i
			godzina
Format czasu	Tak	24 h; 12 h	Preferencje użytkownika -> Data i
			godzina
Automatyczna zmiana pomiędzy czasem letnim	Tak	Wł.; Wył.	Preferencje użytkownika -> Data i
i zimowym			godzina
Nazwa sprężarki	Tak		Preferencje użytkownika -> Nazwa
			spręzarki
Iryp pracy	Tak Tak	AUTO; CONST	Parametry pracy -> Iryby pracy
	Так	LUCAL; NEI;	Parametry pracy -> Iryby pracy
Ostrzeżenie o wysokim ciśnioniu w sieci	Tak		Parametry pracy -> Ciépionie w sieci
Ciśnienie odciażenia			Parametry pracy -> Cisnienie w sieci
			Parametry pracy -> Cisnienie w sieci
	Tak Tak		Parametry pracy -> Cisnienie w sieci
Ostrzeżenie o nickim ciśpioniu w sieci			Parametry pracy -> Cisnienie w sieci
			Parametry pracy -> Cisilienie w Sieci
			sowe
Opóźnienie stycznika głównego	Nie		Parametry pracy -> Parametry cza-
			sowe
Czas rozpedzania silnika	Nie		Parametry pracy -> Parametry cza-
			sowe

Tabela	16:	Lista	parametrów	μżν	vtkownika	h
rubciu	т о .	LIJLU	parametrow	uz	y cixo v v i ilixe	4

www.mikroel.pl tel.: +48 71 352 18 02 mail: mikroel@mikroel.pl

Nazwa	Modyfikacja	Zakres	Lokalizacja
Opóźnienie włączenia zaworu Y	Nie		Parametry pracy -> Parametry cza- sowe
Czas biegu jałowego	Tak	10-32767 s	Parametry pracy -> Parametry cza-
Adaptacyjny bieg jałowy(AutoTlse)	Tak	Włącz; Wyłacz	Parametry pracy -> Parametry cza-
Czas zatrzymywania silnika	Tak	≥ 0 s	Parametry pracy -> Parametry cza-
Czas przełączania gwiazda-trójkąt	Nie		Parametry pracy -> Parametry cza-
Funkcja spustu kondensatu	Tak	Włącz;	Parametry pracy -> Spust konden-
Okres otwierania spustu	Tak	0-720 min	Parametry pracy -> Spust konden-
Czas otwarcia spustu	Tak	0-600 s	Parametry pracy -> Spust konden- satu
Funkcia wentylatora	Nie		Parametry pracy -> Wentylator
Właczenie wentylatora	Nie		Parametry pracy -> Wentylator
Wyłaczenie wentylatora	Nie		Parametry pracy -> Wentylator
Funkcia osuszacza	Nie		Parametry pracy -> Osuszacz
Czas osuszacza	Nic		
Czas osuszania przeu startem sprężarki	Nie		
	Nie		
niu sprężarki	Nie		Parametry pracy -> Osuszacz
Czas okresu pulsacji	Nie		Parametry pracy -> Osuszacz
Czas włączenia w trybie pulsacji	Nie		Parametry pracy -> Osuszacz
Czas oczekiwania w trybie pulsacji	Nie		Parametry pracy -> Osuszacz
Podgrzewacz 1	Nie		Parametry pracy -> Podgrzewacz -> Podgrzewacz 1
Histereza podgrzewacza 1	Nie		Parametry pracy -> Podgrzewacz -> Podgrzewacz 1
Podgrzewacz 2	Nie		Parametry pracy -> Podgrzewacz -> Podgrzewacz 2
Przesunięcie temperatury podgrzewacza 2	Nie		Parametry pracy -> Podgrzewacz -> Podgrzewacz 2
Histereza podgrzewacza 2	Nie		Parametry pracy -> Podgrzewacz -> Podgrzewacz 2
Dogrzewanie biegiem jałowym	Nie		Parametry pracy -> Podgrzewacz -> Dogrzewanie biegiem jałowym
Temperatura włączenia dogrzewania biegiem jałowym	Nie		Parametry pracy -> Podgrzewacz -> Dogrzewanie biegiem jałowym
Temperatura wyłączenia dogrzewania biegiem jałowym	Nie		Parametry pracy -> Podgrzewacz -> Dogrzewanie biegiem jałowym
Ostrzeżenie od wysokiego punktu rosy	Nie		Parametry pracy -> Punkt rosy
Poziom ostrzeżenia za wysokiego punktu rosy	Nie		Parametry pracy -> Punkt rosy
Ostrzeżenie od niskiego punktu rosy	Nie		Parametry pracy -> Punkt rosy
Poziom ostrzeżenia od za niskiego punktu rosy	Nie		Parametry pracy -> Punkt rosy
Bład za wysokiego punktu rosy	Nie		Parametry pracy -> Punkt rosy
Poziom błedu za wysokiego punktu rosy	Nie		Parametry pracy -> Punkt rosy
Bład za niskiego nunktu rosy	Nie		Parametry pracy -> Punkt rosy
Poziom błędu za niskiego punktu rosy	Nie		Parametry pracy -> Punkt rosy
Onóźnienie zdarzeń dla temperatury punktu ro-	Nie		Parametry pracy -> Punkt rosy
sy			
kestart po zaniku zasilania	Так	Włącz; Wyłącz	Parametry pracy -> Auto restart
Restart po błędzie	Tak	Włącz; Wyłącz	Parametry pracy -> Auto restart

Tabela 16: Lista parametrów użytkownika

Tabela 16: List	a parametrów	użytkownika
-----------------	--------------	-------------

Nazwa	Modyfikacja	Zakres	Lokalizacja
Opóźnienie restartu	Tak	≥ 0 s	Parametry pracy -> Auto restart
Maksymalna ilość prób restartu	Tak	≥ 1	Parametry pracy -> Auto restart
Restart po zaniku zasilania	Nie		Parametry pracy -> Przełącznik temperaturowy
Źródło temperatury	Nie		Parametry pracy -> Przełącznik temperaturowy
Górna temperatura przełączania	Nie		Parametry pracy -> Przełącznik temperaturowy
Dolna temperatura przełączania	Nie		Parametry pracy -> Przełącznik temperaturowy
Przywróć ustawienia użytkownika z kopii lokal- nej	Tak		Diagnostyka i serwis -> Przywraca- nie i zapis ustawień
Przywróć ustawienia użytkownika z nośnika ze- wnętrznego	Tak		Diagnostyka i serwis -> Przywraca- nie i zapis ustawień
Zapisz logi na nośniku danych	Tak		Diagnostyka i serwis -> Logi serwi- sowe
Hasło użytkownika	Tak	1-10 cyfr	Ustawienia fabryczne -> Hasła
Funkcja i logika każdego wejścia cyfrowego	Nie		Konfiguracja wejść/wyjść -> Wej- ścia cyfrowe
Funkcja i logika każdego wyjścia cyfrowego	Nie		Konfiguracja wejść/wyjść -> Wyjścia cyfrowe
Funkcja i zakres każdego wejścia analogowego	Nie		Konfiguracja wejść/wyjść -> Wej- ścia analogowe
Funkcja każdego wyjścia analogowego	Nie		Konfiguracja wejść/wyjść -> Wyjścia analogowe
Szybkość transmisji	Tak	2400; 4800; 9600; 19200; 38400; 57600; 115200; 230400	Konfiguracja wejść/wyjść -> RS- 485/RS-485 ISO
Parzystość	Tak	Brak; Parzysty; Nieparzysty;	Konfiguracja wejść/wyjść -> RS- 485/RS-485 ISO
Bity stopu	Tak	1; 1.5; 2	Konfiguracja wejść/wyjść -> RS- 485/RS-485 ISO
Funkcja RS-485/RS-485 ISO	Tak	Brak; Nadrzęd- na; Podrzędna	Konfiguracja wejść/wyjść -> RS- 485/RS-485 ISO
Adres modbus	Tak	1-255	Konfiguracja wejść/wyjść -> RS- 485/RS-485 ISO
Przypisywanie adresu IP	Tak	Auto(DHCP); Statyczne(bez DHCP)	Konfiguracja wejść/wyjść -> Usta- wienia IP
Adres IP	Tak		Konfiguracja wejść/wyjść -> Usta- wienia IP
Maska podsieci	Tak		Konfiguracja wejść/wyjść -> Usta- wienia IP
Brama	Tak		Konfiguracja wejść/wyjść -> Usta- wienia IP
Włącz zawór Y	Tak	Włącz; Wyłącz	Diagnostyka i serwis -> Ręczne ste- rownie zaworu Y
Test zaworu bezpieczeństwa	Tak	< 15.5 bar	Diagnostyka i serwis -> Test zaworu bezpieczeństwa
Limit czasu komunikacji ze sprężarką nadrzędną	Tak	≥ 0 s	Praca sieciowa -> Konfiguracja
Praca jako sprężarka nadrzędna	Tak	Włącz; Wyłącz	Praca sieciowa -> Konfiguracja
Algorytm pracy sieciowej	Tak	SEQ; CAS	Praca sieciowa -> Konfiguracja
Liczba sprężarek podrzędnych	Tak	0-5	Praca sieciowa -> Konfiguracja
Opóźnienie załączania pomiędzy sprężarkami podrzednymi	Tak	0-60 s	Praca sieciowa -> Konfiguracja

Nazwa	Modyfikacja	Zakres	Lokalizacja
Czas rotacji	Tak	≥ 1 min	Praca sieciowa -> Konfiguracja
Ciśnienie odciążenia dla sprężarki nadrzędnej	Tak		Praca sieciowa -> Konfiguracja
Ciśnienie dociążenia dla sprężarki nadrzędnej	Tak		Praca sieciowa -> Konfiguracja
Automatyczna rekonfiguracja limitów ciśnienia	Tak	Włącz; Wyłącz	Praca sieciowa -> Konfiguracja
Punkt pracy sieci	Tak		Praca sieciowa -> Konfiguracja
Ciśnienie odciążenia (sprężarka podrzędna)	Tak		Praca sieciowa -> Sprężarka 1/2/3/4/5
Ciśnienie dociążenia (sprężarka podrzędna)	Tak		Praca sieciowa -> Sprężarka 1/2/3/4/5
Interfejs (sprężarka podrzędna)	Tak	RS-485; RS-485 ISO	Praca sieciowa -> Sprężarka 1/2/3/4/5
Adres modbus (sprężarka podrzędna)	Tak	1-255	Praca sieciowa -> Sprężarka 1/2/3/4/5
Praca planowa	Tak	Aktywuj; Dezaktywuj	Planowanie pracy
Dodaj zdarzenie	Tak		Planowanie pracy -> Zdarzenia jed- norazowe/Zdarzenia cykliczne

Tabela 16: Lista parametrów użytkownika

^F-Parametr dostępny tylko dla sprężarek wyposażonych w falownik

7.1. Zmiana hasła użytkownika

W celu zmiany domyślnego hasła użytkownika należy przejść do zakładki **Parametry użytkownika->Ustawienia fabryczne->Hasła**, a następnie wprowadzić wartość w parametrze "Hasło użytkownika". Hasło może mieć długość od 1 do 10 cyfr.

W przypadku zapomnienia hasła użytkownika należy skontaktować się z serwisem.

8. Algorytm pracy

Sterownik XAIR Expert został wyposażony w kilka algorytmów sterowania silnikiem elektrycznym w zależności od typu kompresora. Algorytm sterowania jest konfigurowany zgodnie ze specyfikacją sprężarki na etapie produkcyjnym. Sterownik pozwala na określenie następujących sposobów rozruchu:

- Gwiazda-trójkąt
- Falownik analogowy
- Falownik Modbus
- Bezpośredni

Powyższe metody sterowania silnikiem elektrycznym oraz ich zasadę działania opisano w podrozdziałach poniżej.

8.1. Schemat algorytmu pracy w konfiguracji Gwiazda-Trójkąt

Rysunek 27: Algorytm sterowania silnikiem

Podstawowy algorytm pracy sprężarki w konfiguracji gwiazda-trójkąt:

- 1. Rozpoczęcie pracy (np. naciśnięcie przycisku START)
- 2. Włączenie stycznika gwiazdy (uruchomienie silnika w konfiguracji gwiazdy)
- 3. Opóźnienie stycznika głównego
- 4. Włączenie stycznika głównego

- 5. Rozruch czas rozpędzania silnika
- 6. Wyłączenie stycznika gwiazdy
- 7. Czas przełączania gwiazda-trójkąt
- 8. Włączenie stycznika trójkąta (uruchomienie silnika w konfiguracji trójkąta), rozpoczęcie pracy właściwej
- 9. Opóźnienie sprężania opóźnienie włączenia zaworu Y
- 10. Włączenie zaworu Y rozpoczęcie sprężania
- 11. Sprężanie. Zawór Y jest włączany/wyłączany przez algorytm pracy zgodnie z wymaganymi nastawami górnej oraz dolnej granicy ciśnienia. Wyłączenie elektrozaworu Y powoduje odciążenie sprężarki i przejście silnika w stan biegu jałowego
- 12. Zatrzymanie pracy (np. naciśnięcie przycisku STOP)
- 13. Wyłączenie zaworu Y, przejście w stan biegu luzem
- 14. Zatrzymywanie czas zatrzymywania silnika
- 15. Wyłączenie styczników trójkąta oraz głównego
- 16. Opóźnienie ponownego rozruchu

8.1.1. Parametry czasowe pracy sprężarki

Ustawienia wszystkich czasów i opóźnień wykorzystywanych w algorytmie sterowania można znaleźć w: **Parametry użytkownika -> Parametry pracy -> Parametry czasowe**.

Rysunek 28: Widok menu z ustawieniami parametrów czasowych dla konfiguracji Gwiazda-trójkąt

Tabela 17: Lista parametrów czasowych pracy sprężarki

Nazwa	Jedn.	Opis
Opóźnienie ponownego rozruchu	S	Minimalny czas pomiędzy zatrzymaniem sprężarki a ko-
		lejnym startem. Jeśli praca sprężarki zostanie wznowio-
		na przed jego upływem, to silnik zostanie uruchomiony
		z odpowiednim opóźnieniem

Nazwa	Jedn.	Opis
Opóźnienie stycznika głównego	ms	Czas pomiędzy załączeniem stycznika głównego a załą-
		czeniem stycznika konfiguracji gwiazdy
Czas rozpędzania silnika	S	Czas rozpędzania się silnika elektrycznego. Czas przełą-
		czania z konfiguracji gwiazdy na konfigurację trójkąta
Opóźnienie włączania zaworu Y	S	Czas oczekiwania na sprężanie, w trakcie którego silnik
		pracuje luzem
Czas biegu jałowego	S	Czas pracy luzem po przekroczeniu górnej granicy ci-
		śnienia
Czas zatrzymywania silnika	S	Czas pracy silnika luzem po naciśnięciu przycisku STOP
Czas przełączania gwiazda-trójkąt	ms	Czas między wyłączeniem stycznika konfiguracji gwiaz-
		da a włączeniem stycznika od konfiguracji trójkąta
Adaptacyjny bieg jałowy		Opisany w rozdziale 9.1.2. Adaptacyjny bieg jałowy
(AutoTlse)		(AutoTlse)

Tabela 17: Lista parametrów czasowych pracy sprężarki

8.2. Schemat algorytmu pracy w konfiguracji Falownik

Zasada działania algorytmu sterowania dla konfiguracji Falownik Modbus oraz Falownik analogowy jest taka sama. Różnica polega na sposobie komunikacji między falownikiem a sterownikiem.

Rysunek 29: Algorytm sterowania silnikiem

Podstawowy algorytm pracy sprężarki w konfiguracji Falownik:

- 1. Rozpoczęcie pracy (np. naciśnięcie przycisku START)
- 2. Rozruch czas rozpędzania silnika

- 3. Opóźnienie sprężania opóźnienie włączania zaworu Y
- 4. Włączenie zaworu Y rozpoczęcie sprężania
- 5. Sprężanie. W trakcie sprężania następuje sterowanie ciśnieniem poprzez włączanie i wyłączanie zaworu Y oraz sterowanie obrotami silnika przez algorytm PID. Wyłączenie elektrozaworu Y powoduje odciążenie sprężarki i przejście silnika w stan biegu jałowego
- 6. Zatrzymanie pracy (np. naciśnięcie przycisku STOP)
- 7. Opóźnienie wyłączenia zaworu Y
- 8. Wyłączenie zaworu Y, przejście w stan biegu luzem
- 9. Zatrzymywanie czas zatrzymywania silnika
- 10. Opóźnienie ponownego rozruchu

8.2.1. Parametry czasowe pracy sprężarki

Ustawienia wszystkich czasów i opóźnień wykorzystywanych w algorytmie sterowania można znaleźć w: **Parametry użytkownika -> Parametry pracy -> Parametry czasowe**.

Rysunek 30: Widok menu z ustawieniami parametrów czasowych dla konfiguracji Falownik

Nazwa	Jedn.	Opis
Opóźnienie ponownego rozruchu	S	Minimalny czas pomiędzy zatrzymaniem sprężarki a ko- lejnym startem. Jeśli praca sprężarki zostanie wznowio- na przed jego upływem, to silnik zostanie uruchomiony z odpowiednim opóźnieniem
Czas rozpędzania silnika	S	Czas rozpędzania się silnika elektrycznego. Procedura stopniowego rozruchu silnika (SOFT-START) do prędkości minimalnej
Opóźnienie włączania zaworu Y	S	Czas oczekiwania na sprężanie, w trakcie którego silnik pracuje luzem
Opóźnienie wyłączania zaworu Y	S	Opóźnienie wyłączenia zaworu Y po naciśnięciu przyci- sku STOP

Tabela 18: Lista parametrów czasowych pracy sprężarki

	Tabela 18: Lista	parametrów	czasowych	pracy	sprężarki
--	------------------	------------	-----------	-------	-----------

Nazwa	Jedn.	Opis
Czas biegu jałowego	S	Czas pracy luzem na minimalnych obrotach silnika elek-
		trycznego po przekroczeniu gornej granicy cisnienia
Czas zatrzymywania silnika	S	Czas zatrzymywania się silnika elektrycznego. Procedu-
		ra stopniowego zatrzymania silnika (SOFT-STOP)
Adaptacyjny bieg jałowy		Opisany w rozdziale 9.1.2. Adaptacyjny bieg jałowy
(AutoTlse)		(AutoTlse)

8.2.2. Regulator PID

Częstotliwość wyjściowa silnika napędowego jest sterowana przez algorytm PID, w oparciu o aktualną oraz zadaną wartość ciśnienia. Regulator będzie dążył do zapewnienia odpowiedniej prędkości obrotowej wału sprężarki, aby zoptymalizować proces sprężania i zredukować zużycie energii elektrycznej.

8.2.3. Ciśnienie zadane

Dla konfiguracji z falownikiem w algorytmie sterowania, oprócz dolnej i górnej granicy ciśnienia, brana jest również pod uwagę wartość ciśnienia zadanego. Jest to tzw. punkt regulacji algorytmu PID, czyli pożądana wartość ciśnienia w sieci i algorytm poprzez płynną regulację wydajności kompresora dąży do ciągłego utrzymania tej wartości ciśnienia.

Jego wartość można ustawić, razem z pozostałymi nastawami ciśnienia, w zakładce:

Parametry użytkownika -> Parametry pracy -> Ciśnienie w sieci.

Wartość tego parametru jest również wyświetlana na ekranie głównym sterownika. Dla innych algorytmów sterownia, np. Gwiazda-Trójkąt, parametr ten jest niewidoczny.

	Ciśnienie		
	Ostrzeżenie o wysokim ciśnieniu w sieci	10.3	bar
	Ciśnienie odciążenia	10.0	bar
	Ciśnienie zadane	9.1	bar
Þ	Ciśnienie dociążenia	8.5	bar
7.4	Ostrzeżenie o niskim ciśnieniu w sieci	0.0	bar

Rysunek 31: Nastawy ciśnienia w sieci

8.3. Schemat algorytmu pracy w konfiguracji Rozruch Bezpośredni

Rysunek 32: Algorytm sterowania silnikiem

Podstawowy algorytm pracy sprężarki w konfiguracji Rozruch Bezpośredni:

- 1. Rozpoczęcie pracy (np. naciśnięcie przycisku START)
- 2. Włączenie stycznika głównego
- 3. Rozruch silnika czas rozpędzania silnika
- 4. Opóźnienie sprężania opóźnienie włączania zaworu Y
- 5. Włączenie zaworu Y rozpoczęcie sprężania
- 6. Sprężanie. Zawór Y jest włączany/wyłączany przez algorytm pracy zgodnie z wymaganymi nastawami górnej oraz dolnej granicy ciśnienia
- 7. Zatrzymanie pracy (np. naciśnięcie przycisku STOP)
- 8. Wyłączenie zaworu Y, przejście w stan biegu luzem
- 9. Zatrzymywanie czas zatrzymywania silnika
- 10. Wyłączenie stycznika głównego

8.3.1. Parametry czasowe pracy sprężarki

Ustawienia wszystkich czasów i opóźnień wykorzystywanych w algorytmie sterowania można znaleźć w : Parametry użytkownika -> Parametry pracy -> Parametry czasowe.

Rysunek 33: Widok menu z ustawieniami parametrów czasowych dla konfiguracji Rozruch Bezpośredni

Nazwa	Jedn.	Opis
Opóźnienie ponownego rozruchu	S	Minimalny czas pomiędzy zatrzymaniem sprężarki a ko- lejnym startem. Jeśli praca sprężarki zostanie wznowio- na przed jego upływem, to silnik zostanie uruchomiony z odpowiednim opóźnieniem
Czas rozpędzania silnika	S	Czas rozpędzania się silnika elektrycznego
Opóźnienie włączania zaworu Y	S	Czas oczekiwania na sprężanie, w trakcie którego silnik pracuje luzem
Czas biegu jałowego	S	Czas pracy luzem po przekroczeniu górnej granicy ci- śnienia
Czas zatrzymywania silnika	S	Czas pracy silnika luzem po naciśnięciu przycisku STOP
Adaptacyjny bieg jałowy (AutoTlse)		Opisany w rozdziale 9.1.2. Adaptacyjny bieg jałowy (AutoTlse)

Tabela 19: Lista parametrów czasowych pracy sprężarki

8.4. Bieg jałowy

Bieg jałowy sprężarki jest częścią każdego z trybów pracy, które przewidziane zostały w sterowniku, jest on realizowany poprzez zamknięcie zaworu Y i pozostawienie włączonego silnika. Umożliwia to szybki powrót maszyny do stanu sprężania powietrza w przypadku spadku ciśnienia, bez konieczności oczekiwania na ponowny rozruch silnika.

Czas biegu jałowego można zdefiniować przechodząc do zakładki:

Parametry użytkownika -> Parametry pracy -> Parametry czasowe -> Czas biegu jałowego.

Możliwy do ustawienia zakres czasu biegu jałowego jest zależny od konkretnego modelu sprężarki. Po upłynięciu czasu biegu jałowego silnik zostaje zatrzymany.

8.5. Metoda kontroli dekompresji

Sterownik XAIR Expert może kontrolować rozprężenie przy pomocy kilku metod: z wykorzystaniem czujnika ssania, opóźnienia czasowego lub czujnika ciśnienia oleju.

9. Ustawienia pracy sprężarki i sterownika

Ustawienia trybów pracy sprężarki można znaleźć w zakładce:

Parametry użytkownika->Parametry pracy->Tryby pracy.

Ustawienia trybów pracy podzielone są na 2 niezależne grupy: Tryb pracy oraz Tryb zdalny. Pierwszy z nich definiuje algorytm pracy sprężarki, drugi określa sposób w jaki sterowana jest sprężarka.

9.1. Tryby pracy

Dostępne tryby pracy:

- AUTO
- CONST

9.1.1. Tryb automatyczny (AUTO)

Tryb pracy automatycznej polega na samoczynnym włączaniu i wyłączaniu sprężarki w momencie osiągnięcia zadanych wartości ciśnienia dociążenia i odciążenia. Aby uruchomić pracę automatyczną należy nacisnąć zielony przycisk START.

Kiedy ciśnienie w sieci osiągnie wartość zadaną (max.), sprężarka przejdzie do biegu jałowego. Jeśli ciśnienie w sieci spadnie poniżej wartości zadanej (min.), przed upływem czasu biegu jałowego, sprężarka powróci do sprężania. Jeśli czas biegu jałowego dobiegnie końca, a wartość ciśnienia w sieci będzie mieścić się w granicach ciśnienia zadanego, silnik zostanie zatrzymany. Sprężarka automatycznie uruchomi się ponownie w momencie kiedy ciśnienie spadnie poniżej wartości ciśnienia minimalnego. W celu wyłączenia cyklu pracy automatycznej należy nacisnąć czerwony przycisk STOP.

Podczas włączonej pracy automatycznej możliwe jest wymuszenie przejścia z biegu jałowego do stanu sprężania, zanim osiągnięte zostanie ciśnienie dociążenia poprzez wciśnięcie przycisku START, o ile wartość aktualnego ciśnienia w sieci jest mniejsza niż ciśnienie odciążenia.

9.1.2. Adaptacyjny bieg jałowy (AutoTlse)

Optymalne ustawienie czasu biegu jałowego jest istotne ze względów ekonomicznych. Zbyt długi czas powoduje zbędną pracę silnika na biegu luzem, co wiąże się z większym zużyciem energii elektrycznej. Z kolei ustawienie krótkiego czasu biegu jałowego może być przyczyną częstego włączania oraz wyłączania sprężarki, co również powoduje wzrost zużycia energii elektrycznej, a dodatkowo skraca żywotność elementów mechanicznych maszyny.

Wykorzystanie algorytmu pozwala na automatyczne sterowanie czasem biegu luzem silnika w automatycznym trybie pracy sprężarki. Na bieżąco analizowana jest historia oraz aktualna wartość ciśnienia w zbiorniku z uwzględnieniem następujących parametrów:

- monotoniczność ciśnienia,
- szybkość opadania/narostu ciśnienia,
- odniesienie wartości ciśnienia do górnej i dolnej granicy,
- czasy narostu/opadania ciśnienia w poprzednich cyklach włączania/wyłączania sprężarki,
- ustawiony czas biegu jałowego,

• szacowana liczba włączeń sprężarki na godzinę.

Na podstawie zebranych informacji funkcja **AutoTlse** steruje czasem biegu jałowego głównie poprzez jego skracanie, przy czym nigdy nie jest on krótszy niż minimalny czas biegu jałowego nastawiony w parametrach czasowych w ustawieniach fabrycznych sterownika. Jeżeli przy pracy luzem nie ma dużego zapotrzebowania na ciśnienie w sieci i spada ono powoli lub w ogóle nie spada, to algorytm przyśpiesza moment wyłączenia sprężarki. Jeśli przewidywana jest konieczność włączenia sprężarki w krótkim czasie po wyłączeniu silnika, to sprężarka pozostaje w trybie biegu luzem.

Funkcja Adaptacyjnego biegu jałowego może być wykorzystywana zarówno na sprężarkach pracujących osobno, jak i na sprężarkach w sieci.

W celu włączenia funkcji **AutoTlse** należy przejść do ekranu **Parametry użytkownika->Parametry pracy->Parametry czasowe** i parametr "Adaptacyjny bieg jałowy (AutoTlse)" ustawić na "Włącz".

9.1.3. Tryb ciągły (CONST)

Tryb pracy ciągłej polega na utrzymywaniu silnika sprężarki w stanie ciągłej pracy. Odbywa się to poprzez nieskończony czas biegu jałowego. Aby uruchomić tryb ciągły należy nacisnąć zielony przycisk START.

Kiedy ciśnienie w sieci osiągnie wartość zadaną (max.), sprężarka przejdzie do stanu biegu jałowego i pozostanie w nim do momentu, aż wartość ciśnienia w sieci spadnie poniżej wartości zadanej (min.), po czym ponownie zacznie sprężać. W przypadku kiedy sprężarka uruchamiana jest przyciskiem START, a wartość ciśnienia w sieci mieści się w granicach ciśnienia zadanego, silnik nie włączy się. Włączenie silnika po raz pierwszy nastąpi w momencie kiedy ciśnienie spadnie poniżej wartości minimalnej. W celu wyłączenia cyklu pracy ciągłej należy nacisnąć czerwony przycisk STOP.

Podczas włączonej pracy ciągłej możliwe jest wymuszenie przejścia z biegu jałowego do stanu sprężania, zanim osiągnięte zostanie ciśnienie dociążenia poprzez wciśnięcie przycisku START, o ile wartość aktualnego ciśnienia w sieci jest mniejsza niż ciśnienie odciążenia.

9.2. Tryby zdalne

Dostępne tryby zdalne:

- LOCAL
- NET
- REM
- RVM

9.2.1. Tryb sterowania lokalnego (LOCAL)

W trybie sterowania lokalnego sprężarka pracuje zgodnie z nastawionymi ciśnieniami na sterowniku (minimalnym i maksymalnym). Sterowanie sprężarką odbywa się poprzez przyciski START i STOP, a sposób w jaki pracuje podyktowany jest przez wewnętrzne algorytmy sterownika, zależne od wybranego trybu pracy.

9.2.2. Tryb sieciowy NET

W trybie pracy sieciowej sprężarka pracuje zgodnie z nastawami ciśnienia przesłanymi przez sterownik nadrzędny poprzez Modbus RTU. Za rozpoczęcie pracy sprężarki odpowiedzialny jest sterownik nadrzędny, nie jest wymagane naciśnięcie przycisku START.

9.2.3. Tryb sterowania zdalnego REM

W trybie sterowania zdalnego REM, sprężarka nie kontroluje nastaw ciśnienia w sieci, sterowanie odbywa się poprzez wejście cyfrowe skonfigurowane jako "Zdalny sygnał dociążenia - odciążenia". Kontrola ciśnienia odbywa się zewnętrznie np. poprzez sterownik nadrzędny.

W momencie, w którym na wejściu cyfrowym sterownika pojawi się sygnał dociążenia, sprężarka zachowa się w taki sam sposób, jak w przypadku spadku ciśnienia poniżej wartości zadanej (min.). Zmiana sygnału na wejściu cyfrowym na odciążenie, zaskutkuje zachowaniem tożsamym z przekroczeniem górnej granicy zadanego ciśnienia (max.).

Oprócz powyższych różnic, działanie algorytmu sterowania sprężarką odbywa się zgodnie z wybranym trybem pracy. Po wybraniu trybu zdalnego REM, na głównym widoku interfejsu, zakresy ciśnienia zostaną zastąpione informacją "Zew. kontrola ciśnienia". Pomimo braku nadzoru nad zadanym ciśnieniem w sieci, sterownik nieprzerwanie kontroluje wartości graniczne ciśnienia przewidziane przez producenta sprężarki. Jeżeli zmierzone ciśnienie w sieci przekroczy wartość ciśnienia maksymalnego, wówczas praca sprężarki zostanie przerwana. **Uwaga!**

Aby możliwe było rozpoczęcie pracy sprężarki w trybie zdalnym REM, należy nacisnąć przycisk START na sterowniku.

9.2.4. Konfiguracja trybu zdalnego REM

Aby skonfigurować pracę zdalną w trybie REM należy ustawić parametr "Tryb zdalny" na "REM" (**Parametry użytkownika->Parametry pracy->Tryby pracy->Tryb zdalny**). Żeby możliwe było sterowanie zdalne w trybie REM, jedno z wejść cyfrowych sterownika powinno mieć przypisaną funkcję "Zdalny sygnał dociążenia - odciążenia".

Aby to zweryfikować należy przejść do parametrów konfiguracji wejść cyfrowych (**Parametry użytkownika-Konfiguracja wejść/wyjść->Wejścia cyfrowe**). Jeżeli żadne z wejść cyfrowych nie jest skonfigurowane jako "Zdalny sygnał dociążenia - odciążenia", należy skontaktować się z producentem sterownika.

9.2.5. Tryb sterowania zdalnego RVM

W trybie sterowania zdalnego RVM, sprężarka nie kontroluje nastaw ciśnienia w sieci, sterowanie odbywa się poprzez komendy Modbus RTU (dociąż lub odciąż) przesyłane poprzez jeden z portów RS-485. Kontrola ciśnienia odbywa się zewnętrznie np. poprzez sterownik nadrzędny.

W momencie, w którym sterownik otrzyma komendę dociążenia, sprężarka zachowa się w taki sam sposób, jak w przypadku spadku ciśnienia poniżej wartości zadanej (min.). Zmiana komendy na odciążenie zaskutkuje zachowaniem tożsamym z przekroczeniem górnej granicy zadanego ciśnienia (max.).

Oprócz powyższych różnic, działanie algorytmu sterowania sprężarką odbywa się zgodnie z wybranym trybem pracy. Po wybraniu trybu zdalnego RVM, na głównym widoku interfejsu, zakresy ciśnienia zostaną zastąpione informacją "Zew. kontrola ciśnienia". Pomimo braku nadzoru nad zadanym ciśnieniem w sieci, sterownik nieprzerwanie kontroluje wartości graniczne ciśnienia przewidziane przez producenta sprężarki. Jeżeli zmierzone ciśnienie w sieci przekroczy wartość ciśnienia maksymalnego, wówczas praca sprężarki zostanie przerwana. **Uwaga!**

Aby możliwe było rozpoczęcie pracy sprężarki w trybie zdalnym RVM, należy nacisnąć przycisk START na sterowniku.

9.2.6. Konfiguracja trybu zdalnego RVM

Aby skonfigurować pracę zdalną w trybie RVM należy ustawić parametr "Tryb zdalny" na "RVM" (**Parametry użytkownika->Parametry pracy->Tryby pracy->Tryb zdalny**).

9.2.7. Funkcja zdalnego startu

Funkcja zdalnego startu sprężarki pozwala kontrolować sprężarkę przy pomocy wejścia cyfrowego, sterowanie odbywa się w taki sam sposób jak w przypadku naciśnięcia przycisku START lub STOP na sterowniku. **Uwaga!**

Przyciski START oraz STOP pozostają nadrzędne dla funkcji zdalnego startu, oznacza to iż zezwolenie na start odbywa się poprzez naciśnięcie przycisku START. Jeżeli funkcja zdalnego startu jest skonfigurowana na jednym z wejść, to po zezwoleniu na start, zależnie od sygnału na wejściu, na polu komunikatów tekstowych wyświetli się komunikat "Oczekiwanie na sygnał startu zdalnego" lub rozpocznie się procedura startu sprężarki. Naciśnięcie przycisku STOP anuluje zezwolenie na start, do momentu ponownego naciśnięcia przycisku START.

9.2.8. Konfiguracja funkcji zdalnego startu

Konfiguracja funkcji zdalnego startu odbywa się poprzez przypisanie funkcji "Zdalny start-stop" jednemu z wejść cyfrowych sterownika. W celu weryfikacji, które wejście ma przypisaną powyższą funkcję, należy przejść do parametrów konfiguracji wejść cyfrowych (**Parametry użytkownika->Konfiguracja wejść/wyjść->Wejścia cy-frowe**). Jeżeli żadne z wejść cyfrowych nie jest skonfigurowane jako "Zdalny start-stop", należy skontaktować się z producentem sterownika.

9.2.9. Różnice pomiędzy trybem zdalnym REM i RVM, a funkcją zdalnego startu

Tryb zdalny REM/RVM to specjalny tryb sterownika, w którym kontrola ciśnienia w sieci odbywa się zewnętrznie. Sam sterownik w trybie REM/RVM działa w oparciu o zewnętrzny sygnał dociążenia i odciążenia, który zastępuje nastawy ciśnienia. Tryb ten przeznaczony jest do sterowania nadrzędnego, w którym za kontrolę ciśnienia w sieci odpowiedzialny jest sterownik nadrzędny.

Funkcja zdalnego startu, w przeciwieństwie do trybu zdalnego REM/RVM, jest jedynie sygnałem, który można przypisać do wejścia cyfrowego sterownika. Nie wpływa na algorytm sterowania, sprężarka działa zgodnie z wybranymi trybami pracy. Funkcja zdalnego startu jest dodatkowym warunkiem jaki musi być spełniony, aby maszyna wystartowała. Funkcja ta pozwala np. na wyprowadzenie przełącznika do włączania sprężarki na zewnętrzny pulpit operatorski, może być tez wykorzystana do prostych algorytmów pracy nadrzędnej.

10. Inne funkcje

10.1. Funkcja wentylatora (chłodzenie sprężarki)

Funkcja wentylatora działa w oparciu o pomiar temperatury oleju i pozwala na utrzymywanie temperatury oleju w optymalnym dla maszyny zakresie. Wentylator włącza się i wyłącza przy określonych poziomach temperatury oleju. Funkcja jest aktywna tylko po wciśnięciu przycisku START.

Parametry funkcji wentylatora znajdują się w zakładce:

Parametry użytkownika -> Parametry pracy -> Wentylator. Ich modyfikacja wymaga serwisowego poziomu uprawnień.

Zatrzymanie maszyny poprzez naciśnięcie przycisku STOP lub wystąpienie błędu w momencie, kiedy wentylator jest włączony, spowoduje jego zatrzymanie. Natomiast w przypadku zatrzymania silnika podczas standardowego cyklu pracy, wentylator nie zostanie wyłączony do momentu, aż temperatura oleju nie spadnie poniżej temperatury wyłączenia wentylatora.

Uwaga! Aby funkcja wentylatora działała poprawnie, do jednego z wyjść cyfrowych musi być przypisana funkcja "Wentylator"

10.2. Funkcja osuszacza

Funkcja osuszacza pozwala na sterowanie osuszaczem przy użyciu jednego z wyjść cyfrowych (przekaźnikowych) sterownika. Dostępne są 2 niezależne tryby pracy osuszacza: Standardowy oraz pulsacyjny.

W trybie standardowym osuszacz jest włączony w trakcie pracy silnika, możliwe jest też skonfigurowanie czasu osuszania przed rozpoczęciem pracy i po zakończeniu.

Tryb pulsacyjny polega na cyklicznym włączaniu i wyłączaniu osuszacza w celu podtrzymania odpowiednich parametrów. Tryb pulsacyjny uruchamia się tylko w momencie gdy, silnik maszyny jest zatrzymany w wyniku upłynięcia czasu biegu jałowego, po osiągnięciu zadanego ciśnienia. Osuszacz przejdzie do działania w trybie pulsacyjnym (jeżeli ten jest skonfigurowany) po zakończeniu pracy w trybie standardowym.

W momencie, kiedy funkcja osuszacza jest włączona, użytkownik informowany jest o pozostałym czasie pracy osuszacza na widoku głównym sterownika.

Konfiguracja osuszacza wymaga uprawnień serwisowych, aby wyświetlić obecną konfigurację należy przejść do zakładki:

Parametry użytkownika -> Parametry pracy -> Osuszacz.

Uwaga!

Aby funkcja osuszacza działała poprawnie, do jednego z wyjść cyfrowych musi być przypisana funkcja "Osuszacz"

10.3. Funkcja spustu kondensatu

Sterownik posiada wbudowaną funkcję obsługi zaworu spustu kondensatu. Zawór jest otwierany z wykorzystaniem jednego z wyjść cyfrowych (przekaźnikowych) sterownika, interwał czasowy oraz czas zadziałania jest definiowany przez użytkownika.

10.3.1. Konfiguracja funkcji spustu kondensatu

W celu konfiguracji funkcji spustu kondensatu należy przejść do zakładki **Parametry użytkownika -> Parametry pracy -> Spust kondensatu**. Parametr "Funkcja spustu kondensatu" pozwala na włączenie lub wyłączenie

działania funkcji.

Parametr "Okres otwierania spustu" określa interwał czasowy w minutach, pomiędzy kolejnymi otwarciami zaworu. Maksymalny możliwy do ustawienia okres to 720 minut.

Parametr "Czas otwarcia spustu" określa czas w sekundach, na jak długo otwarty zostanie zawór spustowy. Maksymalny możliwy do ustawienia czas to 600 sekund.

Uwaga! Aby funkcja spustu kondensatu działała poprawnie, do jednego z wyjść cyfrowych musi być przypisana funkcja "Spust kondensatu"

10.4. Funkcja Auto restartu

Funkcja auto restartu pozwala na automatyczne wznowienie pracy sprężarki po wystąpieniu zaniku zasilania lub błędu. Nie wszystkie błędy pozwalają na auto restart, pełna lista błędów z podziałem na te pozwalające na auto restart lub nie, znajduje się w rozdziale "Ostrzeżenia i błędy".

Procedura automatycznego wznowienia pracy sprężarki w przypadku wystąpienia błędu pozwalającego na auto restart polega na próbie potwierdzenia błędu, a następnie wystartowaniu sprężarki. W przypadku niepowodzenia (brak możliwości potwierdzenia błędu), sterownik podejmie kolejne próby auto restartu (ilość prób oraz interwał czasowy pomiędzy próbami są definiowane przez użytkownika).

Procedura automatycznego wznowienia pracy sprężarki w przypadku zaniku zasilania działa w ten sam sposób, co opisana powyżej, z tą różnicą, że działa jedynie po zaniku zasilania.

Użytkownik jest informowany o trwającej procedurze auto restartu poprzez komunikat na widoku głównym sterownika w polu komunikatów.

W przypadku niepowodzenia auto restartu, funkcja zostanie zresetowana po ręcznym uruchomieniu sprężarki.

10.4.1. Konfiguracja funkcji auto restartu

W celu konfiguracji funkcji auto restartu należy przejść do zakładki:

Parametry użytkownika -> Parametry pracy -> Auto restart.

Parametry "Restart po zaniku zasilania" oraz "Restart po błędzie" pozwalają na wybranie zakresu działania funkcji, może być włączony tylko jeden z nich lub oba jednocześnie.

Parametr "Opóźnienie restartu" pozwala w sekundach zdefiniować czas, jaki odczeka sterownik zanim przystąpi do procedury automatycznego wznowienia pracy. Jednocześnie jest to też interwał czasu, jaki sterownik odczeka pomiędzy kolejnymi próbami auto restartu.

Parametr "Maksymalna ilość prób restartu" określa ilość prób auto restartu, jaką podejmie sterownik.

10.5. Funkcja podgrzewacza

Funkcja podgrzewacza pozwala na uruchomienie grzałki oleju wykorzystując do tego jedno z wyjść cyfrowych (przekaźnikowych) sterownika. Istnieje także możliwość zapobiegania nadmiernemu wystudzeniu oleju poprzez dogrzewanie biegiem jałowym. Sterownik przewiduje możliwość podgrzewania oleju w 3 niezależnych trybach.

Użytkownik ma możliwość podejrzenia nastaw parametrów podgrzewaczy w zakładce:

Parametry użytkownika -> Parametry pracy -> Podgrzewacz.

Ich modyfikacja wymaga uprawnień serwisowych.

10.5.1. Podgrzewacz 1

Funkcja podgrzewacza 1 uruchamia się w momencie, gdy zainicjowany zostanie start silnika, a temperatura oleju będzie niższa niż minimalna temperatura oleju do rozruchu przewidziana przez producenta sprężarki.

Na widoku głównym sterownika widoczny będzie komunikat informujący o działaniu podgrzewacza. Rozruch nastąpi w momencie, kiedy temperatura oleju osiągnie wartość minimalną do rozruchu + wartość histerezy podgrzewacza 1.

Uwaga! Aby funkcja podgrzewacza 1 działała poprawnie, do jednego z wyjść cyfrowych musi być przypisana funkcja "Podgrzewacz 1"

10.5.2. Podgrzewacz 2

Funkcja podgrzewacza 2 pozwala na utrzymanie temperatury oleju w zakresie pozwalającym na natychmiastowy rozruch silnika, niezależnie od algorytmu pracy sprężarki. Oznacza to, że podgrzewacz uruchomi się w momencie, kiedy sprężarka jest zatrzymana w celu utrzymania temperatury oleju w określonym przedziale temperatury.

Uwaga! Aby funkcja podgrzewacza 2 działała poprawnie, do jednego z wyjść cyfrowych musi być przypisana funkcja "Podgrzewacz 2"

10.5.3. Dogrzewanie biegiem jałowym

Funkcja dogrzewania biegiem jałowym polega na wykorzystaniu biegu jałowego sprężarki w celu niedopuszczenia spadku temperatury oleju poniżej minimalnej temperatury do rozruchu. Dogrzewanie biegiem jałowym uruchamia się jedynie w momencie, kiedy sprężarka jest w stanie osiągnięcia zadanego ciśnienia. Oznacza to, że funkcja ta nie zadziała, jeżeli sprężarka jest w stanie zatrzymania.

Użytkownik jest poinformowany o aktywności funkcji dogrzewania biegiem jałowym poprzez komunikat na widoku głównym sterownika.

10.6. Funkcja przełącznika temperaturowego

Funkcja przełącznika temperaturowego polega na powiązaniu aktualnej wartości jednego z pomiarów temperatury z jednym z przekaźników. Umożliwia to włączanie i wyłączanie jednego z przekaźników, zależnie od temperatury zmierzonej przez określony czujnik temperatury.

Uwaga! Aby funkcja przełącznika temperaturowego działała poprawnie, do jednego z wyjść cyfrowych musi być przypisana funkcja "Przełącznik temperaturowy"

Konfiguracja funkcji przełącznika temperaturowego wymaga uprawnień serwisowych, aby wyświetlić obecną konfigurację należy przejść do zakładki:

Parametry użytkownika -> Parametry pracy -> Przełącznik temperaturowy.

10.7. Przywracanie i zapisywanie ustawień

Sterownik XAIR Expert posiada możliwość zapisywania i przywracania ustawień z kopii lokalnej lub z zewnętrznego nośnika danych. Z poziomu dostępu użytkownika możliwe jest jedynie przywrócenie ustawień użytkownika w sterowniku. Do zapisu lub przywrócenia ustawień parametrów serwisowych wymagane są uprawnienia serwisu.

Opcja przywracania i zapisywania ustawień na zewnętrznych nośnikach danych pozwala na kopiowanie ustawień między sterownikami XAIR Expert.

(Przywróć i zapisz ustawienia
	Przywróć ustawienia użytkownika z kopii lokalnej
6.1 bar	← 1/2 →

Rysunek 34: Widok ekranu z przywracaniem ustawień z poziomu użytkownika

W celu przywrócenia lub zapisu ustawień należy przejść do zakładki:

Parametry użytkownika -> Diagnostyka i serwis -> Przywracanie i zapis ustawień.

Użytkownik ma możliwość przywrócenia ustawień z lokalnej kopii zapisanej w pamięci sterownika lub z zewnętrznego nośnika danych podłączonego do jednego ze złącz USB sterownika. Zakres przywróconych ustawień obejmuje jedynie parametry użytkownika. W celu przywrócenia ustawień serwisowych wymagane jest logowanie się z poziomu serwisu. Przywracanie ustawień sprężarki nadpisuje dane i nie będą one mogły zostać przywrócone. Po wybraniu źródła przywracania ustawień należy potwierdzić ostrzeżenie.

Rysunek 35: Ostrzeżenie o nadpisaniu ustawień użytkownika

11. Funkcje diagnostyczne

Sterownik XAIR Expert został wyposażony w dodatkowe narzędzia diagnostyczne, które mogą ułatwić serwisowi obsługę i diagnostykę sprężarki. W celu skorzystania z funkcji diagnostycznych sterownika należy przejść do zakładki **Parametry serwisowe -> Diagnostyka**.

11.1. Test zaworu bezpieczeństwa

Testowanie zaworu bezpieczeństwa może być wykonane jedynie przez osoby upoważnione

Przeprowadzenie testu zaworu bezpieczeństwa polega na ustawieniu docelowego ciśnienia i naciśnięciu przycisku "Rozpocznij test". Spowoduje to uruchomienie sprężarki, która będzie sprężała powietrze do momentu osiągnięcia ustawionej granicy.

Rysunek 36: Widok ekranu sterownika w zakładce ręcznego sterowania zaworem Y

Należy pamiętać, że sterownik w tym momencie ignoruje wszystkie granice ciśnienia i spręża do ciśnienia ustawionego w polu "Ciśnienie docelowe". Aby nastąpiło otwarcie zaworu bezpieczeństwa, ustawiona granica ciśnienia powinna być wyższa od poziomu zadziałania zaworu. Przed przystąpieniem do testu należy zapoznać się informacją wyświetlaną na ekranie sterownika.

Rysunek 37: Ostrzeżenie o rozpoczęciu testu zaworu bezpieczeństwa

12. Liczniki serwisowe

Liczniki serwisowe mają za zadanie przypominać o konieczności wykonania określonych czynności serwisowych. Każdy z liczników ma 2 tryby pracy, odliczanie pozostałych godzin pracy sprężarki lub odliczanie czasu do konkretnej daty. Oba tryby są niezależne, może być aktywny tylko jeden z nich lub dwa równolegle. Pozostałe godziny pracy odliczane są tylko podczas pracy silnika, godziny nie są odliczane, gdy sprężarka jest wyłączona lub ma status oczekiwania. Odliczanie czasu do konkretnej daty odbywa się niezależnie od pracy sprężarki. Sterownik XAIR Expert posiada 9 niezależnych liczników serwisowych:

- Licznik przeglądu generalnego
- Licznik wymiany oleju
- Licznik filtra oleju
- Licznik filtra powietrza
- Licznik separatora
- Licznik pasów napędowych
- Licznik smarowania łożysk silnika
- Licznik ogólnego przeznaczenia 1
- Licznik ogólnego przeznaczenia 2

W przypadku sprężarek z napędem bezpośrednim licznik pasów napędowych nie jest dostępny, jego miejsce zajmuje licznik ogólnego przeznaczenia 3.

	Liczniki serwisowe	
	Licznik przeglądu generalnego	
	Licznik wymiany oleju	1/2
	Licznik filtra oleju	
7.6 bar	Licznik filtra powietrza	

Rysunek 38: Zakładka "Liczniki serwisowe" 1/2

Rysunek 39: Zakładka "Liczniki serwisowe" 2/2

Każdy licznik przedstawiony jest w postaci kafelka z nazwą licznika. Stan licznika widoczny jest po prawej stronie od nazwy. Jeżeli licznik jest aktywny, zależnie od trybu pracy licznika, wyświetlana jest data następnego przeglądu lub liczba godzin pracy pozostałych do przeglądu lub oba jednocześnie. W przypadku kiedy licznik jest nieaktywny, widnieje przy nim napis "WYŁ.".

Jeżeli którykolwiek z aktywnych liczników odliczy godziny do wartości 0, lub osiągnie datę wykonania serwisu, na sterowniku pojawi się ostrzeżenie o treści nawiązującej do licznika, który został przekroczony, np. "Konieczna wymiana oleju".

12.1. Restartowanie liczników serwisowych

Restartowanie liczników serwisowych odbywa się poprzez wybranie kafelka jednego z liczników, a następnie naciśnięcie przycisku "RESTART". Przed nastąpieniem restartu wyświetlone zostanie potwierdzenie, w treści którego zawarte będą wartości, do jakich licznik zostanie zrestartowany. Interwały serwisowe przypisywane są przez serwis lub producenta sprężarki.

13. Statystyki

Sterownik XAIR Expert rejestruje pomiary z czujników i informacje na temat pracy sprężarki oraz przedstawia je w postaci statystyk (które podzielone są na 2 kategorie: zużycie oraz wykresy). W zakładce "Zużycie" przechowywane są informacje na temat czasu oraz cyklów pracy sprężarki. Rodzaje danych dotyczących obciążenia są różne dla sprężarek z rozruchem w układzie gwiazda-trójkąt oraz sprężarek falownikowych.

13.1. Statystyki zużycia

W zakładce "Zużycie" widoczne są parametry pracy sprężarki w postaci wierszy z poszczególnymi parametrami i ich wartościami. Przycisk "ZMIEŃ" pozwala na ręczne wprowadzenie wartości wybranych parametrów, wymagana jest w takim przypadku autoryzacja z poziomu serwisowego.

Nazwa parametru	Opis parametru
Całkowity czas pracy	Całkowity czas pracy silnika
Czas pracy pod obciążeniem	Całkowity czas sprężania

Tabela 20: Parametry z zakładki "Zużycie"

Nazwa parametru	Opis parametru
Średnie obciążenie	Stosunek czasu pracy pod obciążeniem do całkowitego czasu pra-
	су
Liczba rozruchów silnika	Całkowita liczba rozruchów silnika
Średnia ilość rozruchów silnika	Średnia liczba rozruchów silnika na godzinę
Liczba załączeń zaworu Y	Całkowita liczba załączeń zaworu Y
Obciążenie 80% - 100% ^F	Całkowity czas pracy w danym przedziale obciążenia
Obciążenie 60% - 80% ^F	Całkowity czas pracy w danym przedziale obciążenia
Obciążenie 40% - 60% ^F	Całkowity czas pracy w danym przedziale obciążenia
Obciążenie 20% - 40% ^F	Całkowity czas pracy w danym przedziale obciążenia

^F-Parametr dostępny tylko dla sprężarek wyposażonych w falownik

<	Zużycie				
	Całkowity czas pracy	15 h	ZMIEŃ		
	Czas pracy pod obciążeniem	14 h	ZMIEŃ		
	Średnie obciążenie	93.33 %			
	Liczba rozruchów silnika	150	ZMIEŃ		
Ð	Średnia ilość rozruchów silnika	10.00 / h			
6.5	Liczba załączeń zaworu Y	128	ZMIEŃ		
bar					

Rysunek 40: Zakładka zużycie

13.2. Wykresy

Sterownik tworzy wykresy z wybranych danych z okresów: ostatnia godzina, ostatnia doba, ostatni tydzień. Zakres podglądu może być dowolnie ustawiany przez użytkownika, niezależnie dla każdego z wykresów.

Lista danych z których generowane są wykresy:

- Ciśnienie w sieci
- Temperatura oleju
- Temperatura silnika
- Temperatura powietrza
- Prąd silnika
- Częstotliwość wyjściowa

Rysunek 41: Wykres ciśnienia w sieci

14. Planowanie pracy

Sterownik XAIR Expert wyposażony jest w funkcję planowania pracy sprężarki. Umożliwia to automatyczne włączanie i wyłączanie maszyny zgodnie z zaplanowanym wcześniej harmonogramem. Możliwe jest zaplanowanie do 28 zdarzeń, w tym 8 zdarzeń cyklicznych oraz 20 zdarzeń jednorazowych.

Zdarzenia jednorazowe ustawiane są po konkretnej dacie i godzinie, natomiast zdarzenia cykliczne konfigurowane są według planu na każdy dzień tygodnia, który powtarza się w cyklu 7 dni.

Aby przejść do zakładki "Planowanie pracy" należy użyć skrótu z ikoną kalendarza z poziomu widoku głównego lub wybrać kafelek "Planowanie pracy" w parametrach użytkownika.

W zakładce widoczny jest status pracy planowanej (według ustawionych zdarzeń planowania pracy) sterownika, oraz liczba aktywowanych zdarzeń z podziałem na ich rodzaj. Poszczególne zdarzenia widoczne są na listach, które dostępne są po wybraniu jednego z 2 przycisków ustawiania zdarzeń. Listy umożliwiają podgląd parametrów skonfigurowanych zdarzeń. Aby usunąć zdarzenie z listy należy przytrzymać kafelek z wybranym do usunięcia zdarzeniem, poczekać aż zapełni się w całości czerwonym kolorem i wyświetli się napis "USUŃ ZDARZENIE", a następnie nacisnąć go ponownie.

Rysunek 42: Zakładka "Planowanie pracy" i przykładowa lista zdarzeń

Rysunek 43: Zakładka "Planowanie pracy" i przykładowa lista zdarzeń

14.1. Konfiguracja zdarzenia jednorazowego

Zdarzenie jednorazowe konfigurowane jest za pomocą następujących parametrów:

• Tryb pracy

- Data i godzina rozpoczęcia zdarzenia
- Data i godzina zakończenia zdarzenia
- Aktywacja/Dezaktywacja zdarzenia

Zdarzenie jednorazowe 2					
pracy					
ZAKTYWUJ					

Rysunek 44: Przykład konfiguracji zdarzenia jednorazowego

Konfiguracja trybu pracy odbywa się poprzez naciśnięcie przycisku "Tryb pracy" i wybranie jednej z pozycji z listy. Oprócz standardowych trybów pracy (AUTO i CONST) można również wybrać tryb pracy "STOP - sprężarka zatrzymana", umożliwia to stworzenie wyjątku od zdarzenia cyklicznego.

Zakres czasowy zdarzenia konfigurowany jest z poziomu klawiatury ekranowej, po wybraniu odpowiednich pól dat oraz godzin.

Zdarzenie można aktywować lub dezaktywować za pomocą przycisku "AKTYWUJ"/"DEZAKTYWUJ"

14.2. Konfiguracja zdarzenia cyklicznego

Zdarzenie jednorazowe konfigurowane jest za pomocą następujących parametrów:

- Tryb pracy
- Dni tygodnia, w które zdarzenie ma występować
- Godzina rozpoczęcia zdarzenia dla wybranych dni
- Godzina zakończenia zdarzenia dla wybranych dni
- Aktywacja/Dezaktywacja zdarzenia

Rysunek 45: Przykład konfiguracji zdarzenia cyklicznego

Konfiguracja trybu pracy odbywa się poprzez naciśnięcie przycisku "Tryb pracy" i wybranie jednej z pozycji z listy. Dla zdarzeń cyklicznych dostępne są standardowe tryby pracy (AUTO i CONST).

Pola z nazwami dni tygodnia służą do wyboru dni, w które zdarzenie ma występować, po naciśnięciu na dowolne pole podświetli się ono na niebiesko, sygnalizując, że dany dzień został wybrany. Ponowne naciśnięcie cofa wcześniejszy wybór.

Zakres czasowy zdarzenia konfigurowany jest z poziomu klawiatury ekranowej, po wybraniu odpowiednich pól godzin.

Zdarzenie można aktywować lub dezaktywować za pomocą przycisku "AKTYWUJ"/"DEZAKTYWUJ"

14.3. Algorytm planowania pracy

Aby sprężarka działała zgodnie ze skonfigurowanymi zdarzeniami, praca planowana musi zostać aktywowana w zakładce "Planowanie pracy" poprzez naciśnięcie przycisku "AKTYWUJ". W momencie, kiedy praca planowana jest aktywna, przycisk "AKTYWUJ" zamieni się na przycisk "DEZAKTYWUJ", a na ekranie wyświetli się komunikat "Praca planowana jest aktywna".

Ponadto, aby algorytm planowania pracy mógł sterować pracą sprężarki, wymagane jest wcześniejsze zezwolenie na start poprzez naciśnięcie przycisku "START" na sterowniku. Jeżeli zgodnie z zaplanowanymi zdarzeniami sprężarka nie powinna pracować w danej chwili, to po zezwoleniu na start, na widoku głównym interfejsu graficznego wyświetli się komunikat "Zatrzymanie przez planowanie pracy"

Algorytm pracy planowanej uwzględnia jedynie zdarzenia które są aktywne.

UWAGA!

Zdarzenia jednorazowe mają większy priorytet niż zdarzenia cykliczne. Umożliwia to robienie "wyjątków" dla zdarzeń cyklicznych, np. w przypadku świąt państwowych. Jednocześnie zdarzenia, które są na wyższej pozycji na liście mają wyższy priorytet niż te na niższych pozycjach listy. Oznacza to, że w przypadku kiedy dwa lub więcej zaplanowanych zdarzeń będzie się nachodzić na siebie w czasie, sprężarka będzie pracować zgodnie ze zdarzeniem o wyższym priorytecie.

15. Praca sieciowa

Sterownik XAIR Expert może zarządzać jako sterownik nadrzędny grupą do 6 sprężarek (w tym sobą samym), wykorzystując jeden z dwóch dostępnych algorytmów: Sekwencyjny (**SEQ**) lub kaskadowy (**CAS**). Wszystkie sterowniki w sieci muszą być podłączone między sobą poprzez porty RS-485 lub RS-485 ISO. Protokół komunikacyjny wykorzystany do pracy sieciowej to Modbus RTU.

Do pracy sieciowej oprócz sterownika XAIR Expert mogą zostać podłączone następujące sterowniki:

- MS-485
- MS-885
- MS-887 VFD

15.1. Widok pracy sieciowej

Z poziomu sterownika nadrzędnego użytkownik zyskuje dostęp do podglądu statusu wszystkich sterowników w sieci. W momencie kiedy sterownik jest skonfigurowany, jako nadrzędy, na widoku głównym sterownika widoczna jest ikona pracy sieciowej wraz z literką "M", a jej naciśnięcie powoduje przejście do widoku pracy sieciowej.

Widok pracy sieciowej przedstawia wszystkie podłączone sterowniki podrzędne (oznaczone cyframi od 1 do 5) oraz sterownik nadrzędny (oznaczony literą "M").

Liczba widocznych sprężarek podrzędnych zależy od liczby sprężarek, jaka została skonfigurowana w sterowniku nadrzędnym. Każdy z kafelków w widoku pracy sieciowej umożliwia odczytanie aktualnych nastaw ciśnień na każdej ze sprężarek oraz statusu każdej ze sprężarek w formie krótkiego komunikatu. W przypadku wystąpienia błędu lub ostrzeżenia na dowolnej ze sprężarek w sieci, w polu jej kafelka wyświetli się ikona błędu lub ostrzeżenia.

Jeżeli sterownik jest skonfigurowany jako podrzędny, na jego widoku głównym zostanie wyświetlona ikona pracy sieciowej z literą "S". Nie jest możliwy podgląd widoku pracy sieciowej z poziomu sterownika podrzędnego.

Rysunek 46: Widok pracy sieciowej

15.2. Uruchomienie pracy sieciowej i zmiana nastaw sterowników podrzędnych

W celu uruchomienia algorytmu pracy sieciowej należy przejść do widoku pracy sieciowej na sterowniku nadrzędnym, a następnie nacisnąć przycisk "Praca sieciowa jest: WYŁĄCZONA". W momencie włączenia algorytmu, przycisk zmieni nazwę na "Praca sieciowa jest:WŁĄCZONA". Aby sterownik nadrzędny mógł prawidłowo

zarządzać zespołem sprężarek należy przed uruchomieniem pracy sieciowej na sprężarce nadrzędnej wcisnąć przycisk START na każdej ze sprężarek podrzędnych (Nie dotyczy to poprzednich generacji sterowników serii MS, te włączą się automatycznie).

Wyłączenie algorytmu pracy sieciowej spowoduje zatrzymanie wszystkich sprężarek podrzędnych, jeżeli w międzyczasie na sprężarkach podrzędnych nie został wciśnięty przycisk STOP, ich ponowne uruchomienie wymaga jedynie naciśnięcia przycisku "Praca sieciowa jest:WYŁĄCZONA" w widoku pracy sieciowej na sterowniku nadrzędnym.

W celu konfiguracji ciśnienia na dowolnym ze sterowników w sieci należy nacisnąć na jego kafelek, a następnie wpisać odpowiednie wartości ciśnień.

15.3. Błędy i zdarzenia w pracy sieciowej

W przypadku wystąpienia błędu na jednej ze sprężarek podrzędnych, zostanie ona wyłączona automatycznie z pracy w algorytmie sterownia nadrzędnego. Przywrócenie takiej sprężarki do pracy w algorytmie nastąpi w momencie usunięcia usterki i potwierdzenia błędu na jej sterowniku.

Jeżeli błąd wystąpi na sterowniku nadrzędnym, sterownik nadrzędy zostanie wyłączony z algorytmu pracy nadrzędnej, jednakże wciąż będzie sterował pracą sprężarek podrzędnych.

Jeżeli połączenie z jednym lub więcej sterowników podrzędnych zostanie przerwane, w okienku statusu sprężarki podrzędnej wyświetli się komunikat "Błąd komunikacji", taka sprężarka zostanie wyłączona z algorytmu pracy nadrzędnej, jeśli jednak po stronie sprężarki podrzędnej nie wystąpią żadne dodatkowe błędy, sprężarka ta będzie działać zgodnie z ostatnimi otrzymanymi nastawami ciśnienia od sterownika nadrzędnego.

Oznacza to także, że w przypadku utraty komunikacji z siecią sterownika nadrzędnego, pozostałe sprężarki nie wyłączą się, lecz będą pracować zgodnie z ostatnimi otrzymanymi nastawami ciśnienia.

15.4. Algorytm pracy sekwencyjnej (SEQ)

Algorytm sekwencyjny przeznaczony jest do pracy sieciowej grupy sprężarek o zbliżonej mocy. Założeniem algorytmu jest równomierne rozłożenie czasu pracy pomiędzy wszystkie sprężarki w sieci. Odbywa się to poprzez rotację nastaw ciśnienia dociążenia (Pd) i odciążenia (Pu) co określony czas rotacji, który można skonfigurować przechodząc do zakładki:

Parametry użytkownika -> Praca sieciowa -> Konfiguracja.

W fazie rotacji nie dochodzi do zatrzymania poszczególnych sprężarek. Do zatrzymania/wystartowania sprężarki może dojść jedynie na skutek odniesienia aktualnego ciśnienia względem jej nowo nadanych granic Pu -Pd. W procedurze rotacji ciśnień biorą jedynie udział sprężarki aktywne.

Przykładowym, zalecanym ustawieniem granic ciśnień Pu - Pd w algorytmie sekwencyjnym są wykluczające się, skokowe przedziały. Przy takim rozkładzie sprężarka o najwyższym przedziale granic będzie wyłączana najpóźniej (po osiągnięciu wymaganego ciśnienia w sieci) oraz włączana najwcześniej, ponieważ ma najwyższą dolną granicę ciśnienia Pd.

Drugim przykładowym ustawieniem granic Pu - Pd w algorytmie sekwencyjnym jest nadanie sprężarkom identycznych górnych granic Pu oraz skokowych granic dolnych. W takiej sytuacji wszystkie sprężarki będą wyłączane jednocześnie, a włączane przy spadkach ciśnienia poniżej kolejnych dolnych granic Pd.

Ρ	rze	ed rotacją 🛛 Po pierwszej rotacji 🔹 Po drugiej rota			ej rotacji	cd.				
)	Pd	Pu	ID	Pd	Pu	ID	Pd	Pu	
1		6.0	7.0	1	3.0	7.0	1	4.0	7.0	
2		5.0	7.0	2	6.0	7.0	2	3.0	7.0	
3		4.0	7.0	3	5.0	7.0	3	6.0	7.0	
4		3.0	7.0	4	4.0	7.0	4	5.0	7.0	

Sprężarkom zatrzymanym ręcznie lub na skutek wystąpienia na nich błędu krytycznego, automatycznie nada-

wane są najniższe granice ciśnień (przy włączonej funkcji automatycznej rekonfiguracji), a ich granice są przekazywane sprężarkom aktywnym o najniższych granicach Pu - Pd.

Przykładowo, jeżeli w przypadku 1. nastąpi ręczne zatrzymanie sprężarki o ID 2, to po rekonfiguracji, rozkład granic będzie wyglądał jak w sytuacji 2. Jeżeli sprężarka o ID 2 przy procedurze rotacji nadal będzie nieaktywna, to rozkład ciśnień będzie wyglądał jak w przypadku 3.

15.5. Algorytm pracy kaskadowej (CAS)

Algorytm pracy kaskadowej przeznaczony jest do pracy sieciowej grupy sprężarek o zróżnicowanej mocy. Algorytm ten zakłada, że najczęściej włączana i wyłączana będzie sprężarka o najmniejszej mocy. Sprężarka o największej mocy będzie uruchamiana jedynie w przypadkach dużego zapotrzebowania na powietrze w sieci. Przykładowym, zalecanym ustawieniem granic Pu - Pd w algorytmie kaskadowym jest nadanie sprężarkom identycznych górnych granic Pu oraz skokowych granic dolnych (sytuacja 1). W takiej sytuacji wszystkie maszyny będą sprężały powietrze do osiągnięcia wymaganego ciśnienia w sieci, a następnie zostaną jednocześnie wyłączone. Przy małym zapotrzebowaniu na ciśnienie włączana będzie sprężarka o najmniejszej mocy (ID=4). Jeżeli pomimo jej pracy ciśnienie spadnie poniżej dolnej granicy sprężarki o ID=3, to ta sprężarka również zostanie włączona.

1. Wszystkie aktywne				2. 5	ipręża	rka ID	=2 nieaktywna	
ſ	ID	Pd	Pu	Moc	ID	Pd	Pu	Мос
	1	3.0	7.0	120kW	1	4.0	7.0	120kW
	2	4.0	7.0	100kW	2	3.0	7.0	100kW
	3	5.0	7.0	50kW	3	5.0	7.0	50kW
	4	6.0	7.0	20kW	4	6.0	7.0	20kW

W algorytmie kaskadowym granice ciśnienia Pu - Pd są na stałe przypisane do danego identyfikatora sprężarki. Nie występuje tu procedura rotacji (parametr czas rotacji nie jest brany pod uwagę). A zatem przy ustawianiu granic ciśnień istotna jest ich kolejność względem ID. Przy włączonej funkcji automatycznej rekonfiguracji, sprężarkom zatrzymanym ręcznie lub na skutek wystąpienia błędu, automatycznie nadawane są najniższe granice ciśnienia Pu - Pd w sieci. Powoduje to przesunięcie niższych granic o jedną pozycję w górę. Przykładowo, jeżeli w sytuacji 1 wystąpi błąd krytyczny na sprężarce o ID=2, to po automatycznej rekonfiguracji, rozkład granic ciśnienia Pu - Pd będzie wyglądał jak w przypadku 2. Po przywróceniu sprężarki o ID=2 do pracy, rozkład granic powróci do stanu 1.

15.6. Konfiguracja sterownika nadrzędnego

W celu konfiguracji sterownika nadrzędnego do pracy w sieci należy w pierwszej kolejności skonfigurować parametry komunikacji portu RS-485. W sterowniku XAIR Expert są dostępne 2 niezależne porty RS-485, jeden z nich jest izolowany (RS-485 ISO). Dowolny z portów może zostać wykorzystany do pracy sieciowej sterowników. Aby skonfigurować parametry wybranego portu RS-485 należy przejść do zakładki:

Parametry użytkownika -> Konfiguracja wejść/wyjść -> RS-485/RS-485 ISO.

Parametry komunikacji: Szybkość transmisji, parzystość oraz bity stopu powinny być skonfigurowane tak samo dla wszystkich urządzeń w sieci.

W przypadku dużych odległości pomiędzy sterownikami zaleca się ustawić niższe prędkości transmisji. Parametr "Funkcja RS-485" należy ustawić na "Nadrzędna".

(RS-485		
	Szybkość transmisji	9600	
	Parzystość	Brak	
	Bity stopu	1	
	Funkcja RS-485	Slave	
9.8 bar			

Rysunek 47: Menu konfiguracji portu RS-485

W następnym kroku należy skonfigurować parametry pracy sieciowej. Aby to zrobić należy przejść do zakładki: Parametry użytkownika -> Praca sieciowa -> Konfiguracja.

Parametr "Praca jako sprężarka nadrzędna" należy ustawić na "Włącz", spowoduje to automatyczne przestawienie parametru "Tryb zdalny" na "NET".

W pozostałych parametrach należy wybrać liczbę sprężarek podrzędnych (Nie wliczając w to sprężarki nadrzędnej), algorytm pracy sterowania nadrzędnego (sekwencyjny lub kaskadowy).

Parametr "Opóźnienie załączenia pomiędzy sprężarkami podrzędnymi" określa opóźnienie uruchomienia kolejnych sprężarek w sieci i ma na celu ochronę sieci energetycznej przed przeciążeniem w wyniku rozruchu zbyt wielu sprężarek naraz.

Parametr "Czas rotacji" dotyczy tylko trybu sekwencyjnego i określa interwał, w jakim nastawy ciśnień będą zamieniane pomiędzy kolejnymi sprężarkami.

Parametry "Ciśnienie dociążenia/odciążenia dla sprężarki nadrzędnej" określają nastawy ciśnień dla sprężarki nadrzędnej.

Parametr "Automatyczna rekonfiguracja limitów ciśnień", jeżeli jest włączony, odpowiada za przeniesienie nastaw ciśnienia ze sprężarki, na której wystąpiła awaria, na sprężarkę, która działa prawidłowo.

W przypadku pracy sieciowej, w której uczestniczą sprężarki wyposażone w falownik, punkt pracy jest wspólny dla wszystkich sprężarek w sieci, konfiguruje się go w parametrze "Punkt pracy sieci". Nastawa ta jest przesyłana do wszystkich sprężarek podrzędnych wyposażonych w falownik.

Rysunek 48: Menu konfiguracji pracy sieciowej 1/3

Rysunek 49: Menu konfiguracji pracy sieciowej 2/3

Rysunek 50: Menu konfiguracji pracy sieciowej 3/3

Ostatnim krokiem parametryzacji sterownika nadrzędnego jest konfiguracja każdej ze sprężarek podrzędnych. Zakładki konfiguracji sprężarek podrzędnych są dostępne w:

Parametry użytkownika -> Praca sieciowa -> Sprężarka.

Liczba sprężarek do skonfigurowania zależy od wprowadzonej liczby sprężarek podrzędnych.

Każdą ze sprężarek podrzędnych konfiguruje się analogicznie, wpisując nastawy ciśnienia wybranej sprężarki w parametry "Ciśnienie odciążenia" i "Ciśnienie dociążenia".

W parametrze "Interfejs" należy wybrać, do którego portu RS-485 sterownika nadrzędnego podłączona jest dana sprężarka podrzędna ("RS-485" lub "RS-485 ISO").

Parametr "Adres Modbus" określa adres modbus, jaki został nadany danej sprężarce podrzędnej, należy go przepisać ze sterownika sprężarki podrzędnej po jego skonfigurowaniu.

Uwaga!

Adresy sterowników w obrębie pojedynczej sieci nie mogą się powtarzać. Każda ze sprężarek podrzędnych powinna mieć nadany inny adres.

<	Praca sieciowa	
	Konfiguracja	
	Sprężarka 1	1/2
	Sprężarka 2	
7.6	Sprężarka 3	V

Rysunek 51: Menu pracy sieciowej

रि	Konfiguracja sprężarki	Konfiguracja sprężarki podrzędnej 1				
Ċ	Ciśnienie odciążenia	10.0	bar			
	Ciśnienie dociążenia	8.5	bar			
	Interfejs	RS-485				
Þ	Adres modbus	2				
7.4 bar						

Rysunek 52: Menu konfiguracji sprężarki podrzędnej

15.7. Konfiguracja sterownika podrzędnego

W celu konfiguracji każdego ze sterowników podrzędnych XAIR Expert należy w pierwszym kroku skonfigurować port RS-485, do którego podłączona jest sieć. Aby to zrobić należy przejść do zakładki:

Parametry użytkownika -> Konfiguracja wejść/wyjść -> RS-485/RS-485 ISO.

Parametry komunikacji wybranego portu RS-485, czyli "Szybkość transmisji", "Parzystość" oraz "Bity stopu", należy skonfigurować identycznie jak na sterowniku nadrzędnym.

Parametr "Funkcja RS-485/RS-485 ISO" należy wybrać "Podrzędna"

Parametr "Adres modbus" należy wprowadzić dowolny adres, który będzie się pokrywać z wybraną sprężarką podrzędną skonfigurowaną w sterowniku nadrzędnym.

Uwaga!

Adresy sterowników w obrębie pojedynczej sieci nie mogą się powtarzać. Każda ze sprężarek podrzędnych powinna mieć nadany inny adres.

Cały proces należy powtórzyć na każdej ze sprężarek podrzędnych.

<u>ک</u>	RS-485		
	Szybkość transmisji	9600	
	Parzystość	Brak	
	Bity stopu	1	
Q	Funkcja RS-485	Slave	
9.8 bar			

Rysunek 53: Menu konfiguracji portu RS-485

Ostatnim krokiem konfiguracji sprężarki podrzędnej jest zmiana trybu zdalnego na "NET". W celu wprowadzenia zmiany należy przejść do zakładki:

Parametry użytkownika -> Parametry pracy -> Tryby pracy.

(Tr	yby pracy	
	Tryb pracy	AUTO	
	Tryb zdalny	LOCAL	
Þ			
9.8 bar			

Rysunek 54: Menu konfiguracji trybu zdalnego

16. Web Serwer (System wizualizacji)

Sterownik XAIR Expert standardowo jest wyposażony w system wizualizacji (web serwer), umożliwiający monitoring sprężarki w czasie rzeczywistym, za pośrednictwem sieci lokalnej LAN.

Web serwer przedstawiony jest w postaci strony internetowej, strona hostowana jest bezpośrednio ze sterownika w sieci lokalnej, przez co nie jest wymagana instalacja żadnych programów, do prawidłowego działania wystarczy przeglądarka internetowa na komputerze z dostępem do sieci LAN, do której podłączony został sterownik.

Możliwe jest przeglądanie strony web serwera przez kilku użytkowników jednocześnie, z poziomu kilku komputerów.

Web serwer nie posiada możliwości zdalnej zmiany parametrów sterownika.

16.1. Web serwer - Opis interfejsu graficznego

Web serwer podzielony jest na wiele podstron odpowiadającym poszczególnym zakładką w sterowniku. Możliwości wielu z nich są rozszerzone na web serwerze.

Niezależnie od treści podstrony, którą obecnie przegląda użytkownik, zawsze widoczne pozostają pasek nawigacji po web serwerze oraz pasek górny.

Boczny pasek nawigacji pozwala przejść do dowolnej podstrony systemu wizualizacji, oraz wskazuje na której podstronie obecnie znajduje się użytkownik.

Lista podstron web serwera:

- Pulpit XAIR Expert
- Czujniki
- Wykresy
- Zużycie
- Komunikaty
- Liczniki serwisowe
- Praca planowana
- Informacje

Ţ	Pulpit MS-986
<u>.</u>	Czujniki
<u>~</u>	Wykresy
<u>hu</u>	Zużycie
Ø	Komunikaty
1002	Liczniki serwisowe
Ē	Praca planowana
í	Informacje

Rysunek 55: Boczny pasek nawigacji po web serwer

Pasek górny pozwala na podgląd bazowych parametrów sprężarki niezależnie od podstrony, na której znajduje się użytkownik.

Lista parametrów widocznych na pasku górnym:

- Nazwa sprężarki
- Aktualne wskazanie ciśnienia
- Skrócony status sprężarki
- Ikona informująca o działaniu wentylatora
- Ikona silnika zmieniająca kolory analogicznie jak na sterowniku
- Data i godzina ze sterownika

6.70 bar Zatrzymany (15:55 02-08-2023

Rysunek 56: Górny pasek informacyjny web serwer

16.2. Web serwer - Pulpit XAIR Expert

Podstrona "Pulpit XAIR Expert" jest domyślnym widokiem web serwera, przedstawia wszystkie najważniejsze parametry dotyczące kompresora.

Lista parametrów widocznych na podstronie Pulpit XAIR Expert

- Wskazanie ciśnienia
- Aktualne nastawy ciśnienia

- Bargraf oraz wskazanie bargrafu
- Częstotliwość silnika
- Wykres ciśnienia z ostatnich 8 godzin
- Temperatura oleju
- Stan sprężarki
- Stan silnika
- Tryb pracy
- Lista aktywnych komunikatów
- Ikona aktywności pracy sieciowej
- Ikona aktywności pracy planowanej
- Ikona pracy wentylatora
- Ikona pracy osuszacza
- Ikona pracy podgrzewacza
- Ikona spustu kondensatu
- Podstawowe informacje o sprężarce i sterowniku

MIKROEL®			5.70 bar Zatrzymany 🔮 15:56 02-08-2023
Pulpit MS-986	PULPIT		
🔛 🛛 Czujniki	Ciśnienie sieci Nastawy ciśnienia Spadek/wzrost ciśnienia	Temperatura oleju	Tryb pracy
	6.70 bar Ciśnienie dociążenia 10.00 bar O.00 bar/s	24.5 °C	AUTO
lılı Zużycie	bar	Stan sprężanki	Tryb automatyczny
区 Komunikaty	7.		Stan silnika
Liczniki serwisowe		Zatrzymana	(D)
🛗 Praca planowana			Silnik zatrzymany
③ Informacje	0630 0650 1050 1150 1220 1320 14400 1550		
	Aktywne komunikaty	Praca sieciowa Praca planowana	Tabliczka znamionowa
	Data Godzina Status Komunikat	Wyłączona Wyłączona	Wersja oprogramowania v1965 Numer seryjny sterownika 033PRODUKCJA Model sterownika MS-986
		Wentylator Image: Constance Osustance NEEDOSTEPNY Image: Constance NEEDOSTEPNY Spust kondensatu WYLACZONY Image: Constance Podgrzewiscz	Numer seryjny sprężanki Nazwa sprężanki Sposób rozruchu Gwiazda-trójkąt Producent MIKROEL Centrollen Sp. z. o.o. Sp. k.

Rysunek 57: Web serwer widok pulpitu

16.3. Web serwer - Czujniki

Podstrona "Czujniki" odpowiada zakładce "Czujniki" w sterowniku, wyświetlane są w niej jedynie wartości czujników skonfigurowanych w sterowniku.

Lista czujników dostępnych do podglądu na podstronie "Czujniki":

- Ciśnienie w sieci
- Ciśnienie oleju
- Temperatura oleju
- Temperatura silnika
- Temperatura powietrza
- Temperatura otoczenia
- Prąd silnika
- Moc silnika
- Punkt rosy
- Częstotliwość wyjściowa

16.4. Web serwer - Wykresy

Podstrona "Wykresy" prezentuje wykresy dostępne na sterowniku, zakresy przedziałów czasowych są takie same jak na sterowniku (godzina, doba, tydzień), dodatkowo web serwer umożliwia nakładanie na siebie wykresów tych samych typów parametrów np. temperatur. Po najechaniu kursorem na dane miejsce na wykresie, wyświetlone zostanie okienko z informacją o dokładnej wartości na wykresie wraz z datą oraz godziną.

Lista danych z których generowane są wykresy:

- Ciśnienie w sieci
- Temperatura oleju
- Temperatura silnika
- Temperatura powietrza
- Prąd silnika
- Częstotliwość wyjściowa

16.5. Web serwer - Zużycie

Podstrona "Zużycie" przedstawia statystyki czasowe ze sterownika, rozszerzając je o wykres kołowy rozkładu pracy na dociążeniu i odciążeniu, lub w przypadku sprężarek wyposażonych w falownik, wykres słupkowy przedstawiający rozkład pracy na poszczególnych zakresach obciążenia.

16.6. Web serwer - Komunikaty

Podstrona "Komunikaty" pozwala na przeglądanie historii komunikatów (Błędy i ostrzeżenia), które wystąpiły na sterowniku w przeszłości lub są aktywne w danym momencie. Aktywne komunikaty wyróżnione są symbolem niebieskiej flagi. Web serwer umożliwia filtrowanie zdarzeń na liście po typie (błąd, ostrzeżenie, aktywne, nieaktywne) lub po dacie. Jest także możliwość wyszukiwania zdarzeń po nazwie.

16.7. Web serwer - Liczniki serwisowe

Podstrona "Liczniki serwisowe" przestawia aktywne na sterowniku liczniki serwisowe oraz ich wartości, dodatkowo wyświetlony jest także pasek postępu każdego licznika. Pasek postępu wskazuje 100% w przypadku zresetowanego licznika, wartość ta spada wraz z upływem godzin/zbliżaniem się daty następnego przeglądu.

16.8. Web serwer - Praca planowana

Podstrona "Praca planowana" przedstawia wszystkie skonfigurowane na sterowniku zdarzenia wraz z ich parametrami oraz statusem, z podziałem na zdarzenia jednorazowe oraz cykliczne.

16.9. Web serwer - Informacje

Podstrona "Informacje" powiela informacje z zakładki "Informacje" na sterowniku.

16.10. Uruchomienie i konfiguracja połączenia z web serwerem

W celu konfiguracji web serwera należy przejść do zakładki **Parametry użytkownika -> Konfiguracja wejść/wyjść** -> **Ustawienia IP**. Następnie należy wybierając z listy skonfigurować, w jaki sposób zostanie przypisany adres IP do sterownika w sieci lokalnej. Dostępne są tryby: Auto(DHCP) oraz tryb statyczny.

W trybie automatycznym adres IP zostanie przypisany automatycznie za pośrednictwem serwera DHCP działającego w sieci (jest to zależne od indywidualnej konfiguracji sieci lokalnej).

W trybie statycznym dostępna jest konfiguracja standardowych parametrów urządzenia sieciowego.

Lista parametrów do konfiguracji w trybie statycznym:

- Adres IP
- Maska podsieci
- Brama

Uwaga!

Po każdej zmianie dokonanej w wyżej opisanej zakładce należy nacisnąć przycisk "ZAPISZ", w przeciwnym razie parametry nie zostaną zmienione.

रि	Ustawienia IP	
Ċ	Przypisywanie adresu IP	Statyczne (bez DHCP)
	Adres IP	10.12.1.2
	Maska podsieci	255.255.255.0
Þ	Brama	10.12.1.1
4.99 bar	Po wprowadzeniu parametrów, wymagane jest ich zapisanie	

Rysunek 58: Menu konfiguracji adresu IP

W celu sprawdzenia nadanego adresu IP należy przejść do zakładki "Informacje" dostępnej z poziomu głównego menu sterownika. Znajduje się tam także adres MAC urządzenia.

Rysunek 59: Zakładka "Informacje" z widocznym adresem IP oraz MAC

17. Ostrzeżenia i błędy

Sterownik informuje o występujących aktualnie błędach oraz ostrzeżeniach w postaci ikon na pasku boczym interfejsu użytkownika. Ikony pozostaną widoczne na ekranie do czasu, aż użytkownik potwierdzi zdarzenia w zakładce "Aktywne ostrzeżenia i błędy", jeżeli przyczyna wystąpienia danego zdarzenia zniknęła. Po potwierdzeniu komunikat zniknie z listy, jeżeli tak się nie stanie oznacza to, że przyczyna widocznego na liście błędu lub ostrzeżenia dalej występuje. Informacje o błędach są również wyświetlane w postaci komunikatu tekstowego na głównym widoku interfejsu, dotyczy to również błędów i ostrzeżeń wewnętrznych falowników, sterownik odczytuje komunikaty falownika i wyświetla je wraz z ich opisem. Komunikaty można podzielić według ich wpływu na pracę sprężarki:

Ostrzeżenie - nie wpływa na pracę sprężarki Błąd Krytyczny - awaryjne (natychmiastowe) zatrzymanie silnika Błąd Niekrytyczny - standardowe zatrzymanie silnika

W przypadku wystąpienia dowolnego błędu ponowny rozruch silnika nie będzie możliwy, dopóki błąd pozostanie aktywny.

17.1. Lista ostrzeżeń sterownika XAIR Expert

Kod błędu	Nazwa ostrzeżenia	Тур	Opis
W01	Konieczny przegląd	Ostrzeżenie	Nastąpiła data ustalona przez serwi-
			santa, w której należy wykonać prze-
			gląd generalny.
W02	Zbliża się czas przeglądu	Ostrzeżenie	Zbliża się data ustalona przez serwisan-
			ta, w której należy przeprowadzić prze-
			gląd.
W03	Wysokie ciśnienie w sieci	Ostrzeżenie	Ciśnienie w sieci zbliża się do warto-
			ści maksymalnej ustawionej przez ser-
			wisanta.
W04	Niskie ciśnienie w sieci	Ostrzeżenie	Ciśnienie w sieci zbliża się do wartości
			minimalnej ustawionej przez serwisan-
			ta.
W05	Odebrane wartości ciśnień są	Ostrzeżenie	Sterownik wyświetla informacje, iż
	nieprawidłowe		wartości ciśnienia są nieprawidłowe.
W06	Zbliża się czas wymiany oleju	Ostrzeżenie	Zbliża się data ustalona przez serwisan-
			ta, w której należy wymienić olej.
W07	Ostrzeżenie o wysokiej tempera-	Ostrzeżenie	Temperatura oleju zbliża się do warto-
	turze oleju		ści maksymalnej ustawionej przez ser-
			wisanta.
W08	Konieczna wymiana oleju	Ostrzeżenie	Nastąpiła data ustalona przez serwi-
			santa, w której należy wymienić olej.
W09	Zbliża się czas wymiany filtra ole-	Ostrzeżenie	Zbliża się data ustalona przez serwisan-
	ju		ta, w której należy wymienić filtr oleju.
W10	Konieczny przegląd filtra oleju	Ostrzeżenie	Nastąpiła data ustalona przez serwi-
			santa, w której należy wykonać prze-
			gląd filtra oleju.

Tabela 21: Lista ostrzeżeń sterownia XAIR Expert

Tabela 21: Lista ostrzeż	eń sterownia XAIR Expert
--------------------------	--------------------------

Kod błędu	Nazwa ostrzeżenia	Тур	Opis	
W11	Błąd filtra oleju [OF]	Ostrzeżenie	Czujnik filtra oleju zgłasza, że wystąpił	
			błąd.	
W12	Zbliża się czas wymiany separa-	Ostrzeżenie	Zbliża się data ustalona przez serwisan-	
	tora oleju		ta, w której należy wymienić separator	
	-		oleju.	
W13	Konieczny przeglad filtra separa-	Ostrzeżenie	Nastapiła data ustalona przez serwi-	
	tora oleju		santa, w której należy wykonać prze-	
			glad filtra separatora oleju.	
w14	Bład separatora [SEP]	Ostrzeżenie	Czujnik separatora zgłasza, że wystapił	
			bład.	
W15	Zbliża się czas wymiany filtra po-	Ostrzeżenie	Zbliża się data ustalona przez serwisan-	
	wietrza		ta, w której należy wymienić filtr po-	
			wietrza.	
W16	Konjeczny przeglad filtra powie-	Ostrzeżenie	Nastaniła data ustalona przez serwi-	
	trza		santa, w której należy wykonać prze-	
			glad filtra powietrza	
W/17	Bład filtra powietrza [AF]	Ostrzeżenie	Czujnik filtru powietrza zgłasza, że wy-	
	biqu intra powieti za [/ ii]	O Sti Zezenie	stanił bład	
W/18	Zwarcie czujnika temperatury	Ostrzeżenie	Czujnik został źle podłaczony badź ja-	
	powietrzą		kaś cześć została uszkodzona.	
W19	Brak czujnika temperatury po-	Ostrzeżenie	Sterownik wyświetla informacie że	
	wietrza	O Sti Zezenie	spreżarka nie posiada podłaczonego	
			czujnika temperatury powietrza	
W20	Zhliża się czas sprawdzenia na-	Ostrzeżenie	Zhliża się data ustalona przez serwisan-	
1120	ciagu nasa	O Sti Zezenie	ta w której należy sprawdzić nacjąg na-	
			sa.	
W/21	Konjeczne sprawdzenie naciagu	Ostrzeżenie	Nastaniła data ustalona przez serwi-	
	nasa		santa w której należy sprawdzić nacjąg	
			pasa.	
W/22	Zwarcie czujnika temperatury	Ostrzeżenie	Czujnik został źle podłaczony badź ja-	
1122	otoczenia		kaś część została uszkodzona	
W/23	Brak czujnika temperatury oto-	Ostrzeżenie	Sterownik wyświetla informacie że	
W25	czenia	Ostrzezenie	spreżarka nie posiada podłaczonego	
			czujnika temperatury otoczenia	
W/24	Brak gotowości osuszacza	Ostrzeżenie odna-	Osuszacz nie jest gotowy do pracy	
VV24	Blak golowości osuszacza	wishe	Osuszacz me jest gotowy do pracy.	
W/25	Ostrzeżenie o baterij	Ostrzeżenie	Przez problem z bateria, sterownik nie	
VVZJ	Ostrzezenie o baterii		zanamietuje datv	
W/26	Niski poziom paładowania bate-	Ostrzeżenie	Pateria sterownika zbliża się do rozła-	
VV20	rii sterownika	Osti zezenie	dowania	
M/27	Krytycznie niski poziom połodo	Ostrzeżenie	Bateria sterownika za chwilo cio rozła	
VVZ/	wania haterii sterownika			
W/28	7warcie przekładnika pradowa	Ostrzeżenie	Czujnik został źle podłaczony badź ja-	
VV20			kaś część została uszkodzona	
1//29	Brak przekładnika pradowogo	Ostrzeżenia	sterownik wyświatla informacia ża	
VV ∠ 7	υακ μιζεκιαυτικά μι φυσθέξο		spretarka nie posiada podłaczonogo	
			przekładnika pradowogo	
			przeklaulika prąuowego.	

Kod błędu	Nazwa ostrzeżenia	Тур	Opis
W30	Punkt rosy zbyt niski	Ostrzeżenie	Temperatura rosy zbliża się do wartości
			minimalnej ustawionej przez serwisan-
			ta.
W31	Punkt rosy zbyt wysoki	Ostrzeżenie	Temperatura rosy zbliża się do warto-
			ści maksymalnej ustawionej przez ser-
			wisanta.
W32	Zwarcie czujnika punktu rosy	Ostrzeżenie	Czujnik został źle podłączony, bądź ja-
			kaś część została uszkodzona.
W33	Brak czujnika punktu rosy	Ostrzeżenie	Sterownik wyświetla informacje, że
			sprężarka nie posiada podłączonego
			czujnika punktu rosy.
W34	Błąd komunikacji pracy siecio-	Ostrzeżenie	Sterownik wyświetla informacje, że
	wej		wystąpił problem z pracą sieciową.
W35	Błąd komunikacji sprężarki pod-	Ostrzeżenie	Sprężarka podrzędna 1 nie jest podłą-
	rzędnej 1		czona do sieci, bądź wystąpił jakiś błąd
			uniemożliwiający połączenie.
W36	Błąd komunikacji sprężarki pod-	Ostrzeżenie	Sprężarka podrzędna 2 nie jest podłą-
	rzędnej 2		czona do sieci, bądź wystąpił jakiś błąd
			uniemożliwiający połączenie.
W37	Błąd komunikacji sprężarki pod-	Ostrzeżenie	Sprężarka podrzędna 3 nie jest podłą-
	rzędnej 3		czona do sieci, bądź wystąpił jakiś błąd
			uniemożliwiający połączenie.
W38	Błąd komunikacji sprężarki pod-	Ostrzeżenie	Sprężarka podrzędna 4 nie jest podłą-
	rzędnej 4		czona do sieci, bądź wystąpił jakiś błąd
			uniemożliwiający połączenie.
W39	Błąd komunikacji sprężarki pod-	Ostrzeżenie	Sprężarka podrzędna 5 nie jest podłą-
	rzędnej 5		czona do sieci, bądź wystąpił jakiś błąd
			uniemożliwiający połączenie.
W40	Praca sieciowa została wyłączo-	Ostrzeżenie	Na sterowniku nadrzędnym została wy-
	na na sterowniku nadrzędnym		łączona praca sieciowa, bądź utracił on
			połączenie.
W41	Licznik użytkownika 1 konieczny	Ostrzeżenie	Nastąpiła data ustalona przez serwi-
	przegląd		santa, w której należy wykonać prze-
			gląd licznika użytkownika 1.
W42	Licznik użytkownika 2 konieczny	Ostrzeżenie	Nastąpiła data ustalona przez serwi-
	przegląd		santa, w której należy wykonać prze-
			gląd licznika użytkownika 2.
W43	Licznik użytkownika 1 zbliża się	Ostrzeżenie	Zbliża się data ustalona przez serwisan-
	czas przeglądu		ta, w której należy wykonać przegląd
			generalny.
W44	Licznik użytkownika 2 zbliża się	Ostrzeżenie	Zbliża się data ustalona przez serwisan-
	czas przeglądu		ta, w której należy wykonać przegląd
			generalny.
W45	Ostrzeżenie falownika	Ostrzeżenie	Na falowniku wystąpiło ostrzeżenie.
W46	Zwarcie czujnika przepływu	Ostrzeżenie	Czujnik przepływu jest zwarty.
W47	Brak czujnika przepływu	Ostrzeżenie	Brak podłączonego czujnika przepływu
			do weiścia.

Tabela 21: Lista ostrzeżeń sterownia XAIR Expert

Kod błędu	Nazwa ostrzeżenia	Тур	Opis
W48	Konieczne nasmarowanie łożysk silnika	Ostrzeżenie	Licznik serwisowy nasmarowania ło- żysk silnika przekroczył ustawioną war- tość.
W49	Zbliża się czas nasmarowania ło- żysk silnika	Ostrzeżenie	Ostrzeżenie o zbliżającym się upłynię- ciu licznika serwisowego smarowania łożysk.
W54	Zbyt niska temperatura dodat- kowa	Ostrzeżenie	Zbyt niska temperatura dodatkowa.
W55	Zbyt wysoka temperatura do- datkowa	Ostrzeżenie	Zbyt wysoka temperatura dodatkowa.
W56	Brak czujnika temperatury punk- tu rosy	Ostrzeżenie	Brak podłączonego czujnika punktu ro- sy.
W57	Zwarcie czujnika temperatury punktu rosy	Ostrzeżenie	Zwarcie czujnika punktu rosy.

Tabela 21: Lista ostrzeżeń sterownia XAIR Expert

17.2. Informacje o ostrzeżeniach falownika DANFOSS

Kod błędu	Opis błędu
W1	Niskie napięcie 10V
W2	Błąd Live zero (W2)
W3	Brak silnika
W4	Utrata fazy zas.
W5	Wysokie napięcie w obw. DC
W6	Niskie napięcie w obw. DC
W7	Przepięcie w obw. DC
W8	Napięcie w obw. DC poniżej dopuszcz.
W9	Przeciążenie inwertora
W10	Przegrz. ETR silnika
W11	Przeg. term. silnika
W12	Ograniczenie momentu
W13	Przetężenie
W14	Błąd uziemienia
W17	Sterowanie ster. TO
W25	Rezystor hamulca
W26	Przeciążenie hamulca
W27	Hamulec IGBT
W28	Kontrola hamulca
W34	Błąd Fieldbus
W36	Awaria zasilania
W47	Niskie zasilanie 24V
W49	Ograniczenie prędkości
W59	Ograniczenie prądu

Tabela 22: Lista ostrzeżeń falownika DANFOSS

Kod błędu	Opis błędu
W62	Ograniczenie częst. wyjściowej
W64	Ograniczenie napięcia
W65	Temperatura karty sterowania
W66	Niska temp.
W68	Safe stop
W69	Przegrzanie karty zasilania
W90	Utrata sygnału enkodera

Tabela 22: Lista ostrzeżeń falownika DANFOSS

17.3. Informacje o ostrzeżeniach falownika YASKAWA

Tabela 23: Lista ostrzeżeń falownika YASKAWA

Kod błędu	Opis błędu
dEv	Odchyłka prędkości
CALL	Błąd komunikacji
oH2	Ostrzeżenie o przegrzaniu falownika
oH3	Ostrzeżenie o przegrzaniu silnika
DC Uv	Za małe napięcie zasilania

17.4. Informacje o ostrzeżeniach falownika Delta

Tabela 24: Lista ostrzeżeń falownika Delta

Kod błędu	Opis błędu
CE1	Nieprawidłowy kod funkcyjny Modbusu RS-485
CE2	Nieprawidłowy adres danych Modbusu RS-485
CE3	Nieprawidłowa wartość danych Modbusu RS-485
CE4	Zapis danych Modbusu RS-485 jest ustawiony tylko na odczyt
CE10	Upłynął limit czasu dla Modbusu RS-485
SE1	Błąd kopii Keypad 1: Upłynął limit czasowy
SE2	Błąd kopii Keypad 2: Błąd zapisu parametrów
oH1	Silnik prądu przemiennego wykrywa przegrzanie IGBT oraz powyżej poziomu
	ochrony ostrzeżenia oH1
oH2	Sterownik wykrył przegrzanie kondensatora
PID	Utrata informacji zwrotnej PID (ostrzeżenie o analogowym sygnale zwrotnym;
	działa tylko, gdy włączony jest PID)
ANL	Utrata prądu na wejściu analogowym (zawiera wszystkie analogowe sygnały
	4-20mA)
uC	Niski prąd
PGFB	Ostrzeżenie o błędzie zwrotu informacji PG
oSPD	Ostrzeżenie nadmiernej prędkości
dAvE	Ostrzeżenie odchylenia od nadmiernej prędkości

MIKROEL®

Tabela 24: Lista ostrzeżeń falownika Delta

Kod błędu	Opis błędu
PHL	Ostrzeżenie o utracie fazy wejściowej
ot1	Ostrzeżenie o nadmiernym momencie obrotowym 1
ot2	Ostrzeżenie o nadmiernym momencie obrotowym 2
oH3	Ostrzeżenie o przegrzaniu silnika. Napęd silnika prądu przemiennego wykrywa
	zbyt wysoką temperaturę wewnątrz silnika
oSL	Ostrzeżenie o przekroczeniu poślizgu.
tUn	Trwa automatyczne dostrajanie parametrów. Podczas automatycznego do-
	strajania na Keypadzie wyświetla się "tUn"
OPHL	Utrata fazy wyjściowej
SE3	Błąd kopii Keypad 3: błąd modelu kopiowania
CGdn	Przekroczenie limitu czasu ochrony CANopen 1
CHbn	Błąd pulsu CANopen
CbFn	Błąd wyłączenia magistrali CANopen
Cldn	Błąd indeksu CANopen
CAdn	Błąd adresu stacji CANopen (obsługuje tylko 1–127)
CFrn	Błąd pamięci CANopen
CSdn	Przekroczono limit czasu transmisji SDO (widoczne tylko na stacji nadrzędnej)
CSbn	CANopen SDO odbiera przepełnienie rejestru
CPtn	Błąd formatu protokołu CANopen
PLrA	PLC (RTC) nie jest wyregulowany
PLiC	Błąd InnerCOM
Plrt	Błąd PLC (RTC)
PLod	Ostrzeżenie o błędzie pobierania sterownika PLC
PLSv	Błąd danych podczas zapisywania pracy PLC
PLdA	Błąd danych podczas pracy PLC
PLFn	Błąd kodu funkcji pobierania PLC
PLor	Przepełnienie rejestru PLC
PLFF	Błąd kodu funkcji podczas pracy PLC
PLSn	Błąd sumy kontrolnej PLC
PLEd	Brak polecenia zakończenia PLC
PLCr	Błąd polecenia PLC MCR
PLdF	Pobieranie sterownika PLC nie powiodło się
PLSF	Czas skanowania sterownika PLC przekracza maksymalny dopuszczalny czas
PCGd	Błąd zabezpieczenia CANopen Master
PCbF	CANopen Master BUS wyłączona
PCnL	Błąd węzła głównego CANopen
PCCt	Przekroczono limit czasu cyklu CANopen Master
PCSF	Przepełnienie CANopen Master SDO
PCSd	Przekroczono limit czasu CANopen Master SDO
PCAd	Błąd adresu stacji nadrzędnej CANopen
РсТо	Kiedy dysk otrzymuje nieprawidłowy pakiet, oznacza to, że występują zakłó-
	cenia lub polecenie z jednostki nadrzędnej nie spełnia polecenia formatu CA-
	Nopen
ECid	Zduplikowany błąd identyfikatora MAC. Błąd ustawienia adresu węzła
ECLv	Niskie napięcie karty komunikacyjnej

Kod błędu	Opis błędu
ECtt	Karta komunikacyjna znajduje się w trybie testowym
ECbF	Karta komunikacyjna wykryła zbyt wiele błędów w pliku BUS, następnie prze-
	szła w stan BUS-OFF i zatrzymało komunikację
ECnP	Brakuje zasilania w DeviceNet
ECFF	Błąd ustawień fabrycznych
ECiF	Poważny błąd wewnętrzny
ECio	Połączenie wejść wyjść zerwane
ECPP	Błąd danych parametrów Profibus
ECPi	Błąd danych konfiguracyjnych Profibus
ECEF	Kabel Ethernet nie jest podłączony
ECto	Osiągnięto limit czasu komunikacji dla karty komunikacyjnej i jednostki nad- rzędnej
ECCS	Błąd sumy kontrolnej karty komunikacyjnej i napędu
ECrF	Karta komunikacyjna powraca do ustawień domyślnych
ECo0	MODBUS TCP przekracza maksymalną wartość komunikacyjną
ECo1	Ethernet/IP przekracza maksymalną wartość komunikacyjną
ECiP	Błąd ustawienia IP
EC3F	Ostrzeżenie o poczcie: Wiadomość alarmowa zostanie wysłana, gdy karta ko-
	munikacyjna ustanowi warunki alarmowe
Ecby	Karta komunikacyjna zajęta: otrzymano za dużo pakietów
ECCb	Ostrzeżenie o zerwaniu karty komunikacyjnej
CPLP	Skopiuj błąd hasła PLC. Gdy KPC-CC01 przetwarza kopię PLC i PLC hasło jest nieprawidłowe, pojawia się ostrzeżenie CPLP
CPLO	Skopiuj błąd trybu odczytu PLC
CPL1	Skopiuj błąd trybu zapisu PLC
CPLv	Skopiuj błąd wersji PLC. Kiedy wbudowany sterownik PLC inny niż C2000 zo-
	stanie skopiowany do napędu C2000, pojawia się ostrzeżenie CPLv
CPLS	Kopiuj błąd wielkości pojemności sterownika PLC
CPLF	Należy wykorzystać funkcję kopiowania PLC KPC-CC01, gdy sterownik PLC jest
	wyłączony
CPLt	Skopiuj przekroczenie limitu czasu PLC
ictn	Przekroczenie limitu czasu komunikacji wewnętrznej
SpdR	Szacowana prędkość, jest w odwrotnym kierunku względem rzeczywistym kie-
	runkiem działania
dEb	Rezerwa energii hamowania

Tabela 24: Lista ostrzeżeń falownika Delta

17.5. Lista błędów sterownika XAIR Expert

Tabela 25:	Lista	błedów	sterownika	XAIR	Fxpert

Kod błędu	Nazwa ostrzeżenia	Тур	Opis
E01	Błąd asymetrii zasilania	Błąd krytyczny (możliwy auto re- start)	Przesunięcie fazowe zasilania.

Tabela 25: Lista biędow sterownika AAIR Expert				
zwa ostrzeżenia	Тур	Opis		
d kolejności faz	Błąd krytyczny	Wykryto zamienior		

Kod błędu	Nazwa ostrzeżenia	Тур	Opis
E02	Błąd kolejności faz	Błąd krytyczny	Wykryto zamienioną kolejność faz.
E03	Błąd termika	Błąd krytyczny	Przekroczono temperaturę silnika.
E04	Zbyt wysokie ciśnienie w sieci	Błąd krytyczny	Sterownik wyświetla informacje, że wystąpiło zbyt wysokie ciśnienie.
E05	Brak czujnika ciśnienia w sieci	Błąd krytyczny	Sterownik wyświetla informacje, że wystąpił problem z czujnikiem ciśnie- nia.
E06	Zwarcie czujnika ciśnienia w sieci	Błąd krytyczny	Czujnik został źle podłączony, bądź ja- kaś część została uszkodzona.
E07	Nie wybrano czujnika ciśnienia	Błąd krytyczny	Należy wybrać czujnik ciśnienia.
E08	Zbyt wysoka temperatura oleju	Błąd krytyczny	Sterownik wyświetla informacje, że wystąpiła zbyt wysoka temperatura oleju.
E09	Za niska temperatura oleju	Błąd odnawialny	Sprężarka nie może prawidłowo praco- wać, ponieważ temperatura oleju jest zbyt niska.
E10	Zbyt wolny przyrost temperatu- ry oleju	Błąd krytyczny	Temperatura oleju rośnie zbyt wolno, by sprężarka prawidłowo mogła praco- wać.
E11	Zwarcie czujnika temperatury oleju	Błąd krytyczny	Czujnik został źle podłączony, bądź ja- kaś część została uszkodzona.
E12	Brak czujnika temperatury oleju	Błąd krytyczny	Sterownik wyświetla informacje, że problem z czujnikiem temperatury ole- ju.
E13	Zbyt niski prąd silnika po starcie	Błąd krytyczny	Prąd dochodzący do silnika jest za ni- ski po starcie by utrzymać prawidłową pracę sprężarki.
E14	Zbyt duży prąd silnika	Błąd krytyczny	Prąd dochodzący do silnika jest zbyt wysoki.
E15	Zanik zasilania	Błąd odnawialny	Zasilanie otrzymało nieodpowiedni po- ziom napięcia.
E16	Zbyt wysoka temperatura silnika	Błąd krytyczny	Sterownik wyświetla informacje, że wystąpiła zbyt wysoka temperatura sil- nika.
E17	Brak czujnika temperatury silni- ka	Błąd krytyczny	Sterownik wyświetla informacje, że problem z wentylatorem.
E18	Zwarcie czujnika temperatury silnika	Błąd krytyczny	Czujnik został źle podłączony, bądź ja- kaś część została uszkodzona.
E19	Zbyt wysoka temperatura punk- tu rosy	Błąd krytyczny	Sterownik wyświetla informacje, że wystąpiła zbyt wysoka temperatura punktu rosy.
E20	Zbyt niska temperatura punktu rosy	Błąd niekrytyczny	Sterownik wyświetla informacje, że wystąpiła zbyt niska temperatura punktu rosy.
E21	Błąd wentylatora	Błąd niekrytyczny (możliwy auto restart)	Sterownik wyświetla informacje, że wystąpił problem z wentylatorem.

Kod błędu	Nazwa ostrzeżenia	Тур	Opis
E22	Brak gotowości osuszacza	Błąd odnawialny	Osuszacz nie jest gotowy do pracy.
E23	Awaryjne zatrzymanie	Błąd krytyczny	C Sterownik informuje, że jakiś czynnik
			spowodował, iz nastąpiło awaryjne za- trzymanie spreżarki
F24	Pamieć sterownika została wy-	Bład krytyczny	Sterownik został przywrócony do usta-
	czyszczona		wień fabrycznych.
E25	Błąd falownika	Błąd krytyczny	Na falowniku występuje błąd.
E26	Błąd komunikacji z falownikiem	Błąd krytyczny	Niepoprawna komunikacja z falowni- kiem.
E27	Zwarcie czujnika temperatury dodatkowej	Błąd niekrytyczny	Zwarcie na wejściu czujnika tempera- tury dodatkowej.
E28	Brak czujnika temperatury do- datkowej	Błąd niekrytyczny	Brak podłączonego czujnika tempera- tury dodatkowej.
E29	Zbyt niska temperatura dodat- kowa	Błąd niekrytyczny	Zmierzona wartość temperatury do- datkowej poniżej minimalnego pozio-
			mu.
E30	Zbyt wysoka temperatura do- datkowa	Błąd niekrytyczny	Zmierzona wartość temperatury do- datkowej powyżej maksymalnego po-
			ziomu.
E31	Zbyt niskie napięcie w obwodzie 24 V	Błąd krytyczny	Napięcie w obwodzie 24 V poniżej mi- nimalnego poziomu.
E32	Błąd spadku ciśnienia wtrysku oleju	Błąd krytyczny	Zbyt duży spadek ciśnienia wtrysku oleju.
E33	Zbyt niskie ciśnienie wtrysku oleju	Błąd krytyczny	Za niskie ciśnienie wtrysku oleju.
E34	Zwarcie czujnika ciśnienia wtry- sku oleju	Błąd krytyczny	Zwarcie na wejściu czujnika ciśnienia wtrysku oleju.
E35	Nie podłączony czujnik ciśnienia wtrysku oleju	Błąd krytyczny	Brak podłączonego czujnika ciśnienia wtrysku oleju.
E36	Zwarcie czujnika ciśnienia oleju	Błąd krytyczny	Zwarcie na wejściu czujnika ciśnienia oleju.
E37	Nie podłączony czujnik ciśnienia oleju	Błąd krytyczny	Brak podłączonego czujnika ciśnienia oleju.
E39	Przeciążenie silnika	Błąd krytyczny	Zbyt duże obciążenie silnika.

Tabela 25: Lista błędów sterownika XAIR Expert

17.6. Błędy falownika DANFOSS

Kod błędu	Rodzaj błędu	Opis błędu
A2	Błąd krytyczny	Błąd Live zero
A4	Błąd krytyczny	Utrata fazy zas.
A7	Błąd krytyczny	Przepięcie w obw. DC
A8	Błąd krytyczny	Napięcie w obw. DC poniżej dopuszcz.
A9	Błąd krytyczny	Przeciążenie inwertora

Kod błędu	Rodzaj błędu	Opis błędu
A10	Błąd krytyczny	Przegrz. ETR silnika
A11	Błąd krytyczny	Przeg. term. silnika
A12	Błąd krytyczny	Ograniczenie momentu
A13	Błąd krytyczny	Przetężenie
A14	Błąd krytyczny	Błąd uziemienia
A16	Błąd krytyczny	Zwarcie
A17	Błąd krytyczny	Sterowanie ster. TO
A25	Błąd krytyczny	Rezystor hamulca
A26	Błąd krytyczny	Przeciążenie hamulca
A27	Błąd krytyczny	Hamulec IGBT
A28	Błąd krytyczny	Kontrola hamulca
A30	Błąd krytyczny	Zanik fazy U
A31	Błąd krytyczny	Zanik fazy V
A32	Błąd krytyczny	Zanik fazy W
A33	Błąd krytyczny	Błąd układu wstępnego ładowania w fazie
		rozruchu
A34	Błąd krytyczny	Błąd magistrali kom.
A36	Błąd krytyczny	Awaria zasilania
A38	Błąd krytyczny	Błąd wewnętrzny
A47	Błąd krytyczny	Niskie zasilanie 24 V
A48	Błąd krytyczny	Niskie zasilanie 1,8 V
A63	Błąd krytyczny	Błąd hamulca
A65	Błąd krytyczny	Temperatura karty sterowania
A67	Błąd krytyczny	Zmiana opcji
A68	Błąd krytyczny	Bezpieczny stop
A69	Błąd krytyczny	Temperatura karty zasilającej
A80	Błąd krytyczny	Przetwornica uruchomiona

Tabela 26: Lista błędów falownika DANFOSS

17.7. Błędy falownika YASKAWA

Tabela 27: Lista błędów falownika YASKAWA

Kod błędu	Rodzaj błędu	Opis błędu
Uv1	Błąd krytyczny	Za małe napięcie zasilania DC
SC	Błąd krytyczny	Zwarcie wyjścia lub błąd IGBT
GF	Błąd krytyczny	Błąd uziemienia
oC	Błąd krytyczny	Przetężenie
ov	Błąd krytyczny	Za duże napięcie zasilania DC
оН	Błąd krytyczny	Przegrzanie radiatora
oH1	Błąd krytyczny	Przegrzanie radiatora
oL1	Błąd krytyczny	Silnik przeciążony
oL2	Błąd krytyczny	Falownik przeciążony
PF	Błąd krytyczny	Zanik fazy na wejściu
LF	Błąd krytyczny	Zanik fazy na wyjściu

Tabela 27:	Lista	błędów	falownika	YASKAWA

Kod błędu	Rodzaj błędu	Opis błędu
oH4	Błąd krytyczny	Przegrzanie silnika
CE	Błąd krytyczny	Błąd komunikacji Modbus
EF1	Błąd krytyczny	Błąd zewnętrzny - terminal S1
SCF	Błąd krytyczny	Błąd układu bezpieczeństwa
оН3	Błąd krytyczny	Przegrzanie silnika

17.8. Błędy falownika Delta

Tabela 28: Lista błędów falownika Delta

Kod błędu	Opis błędu
осА	Prąd wyjściowy przekracza 2,4-krotność prądu znamionowego podczas przyśpieszenie. Kie- dy ocA wystąpi, napęd zamyka bramę wyjściową natychmiastowo. Silnik pracuje swobodnie i wyświetlacz pokazuje błąd ocA
ocd	Prąd wyjściowy przekracza 2,4-krotność prądu znamionowego podczas zmniejszenie pręd- kości. Kiedy ocd wystąpi, napęd zamyka bramę wyjściową natychmiastowo. Silnik pracuje swobodnie i wyświetlacz pokazuje błąd ocd
ocn	Prąd wyjściowy przekracza 2,4-krotność prądu znamionowego podczas zmniejszenie pręd- kości. Kiedy ocn wystąpi, napęd zamyka bramę wyjściową natychmiastowo. Silnik pracuje swobodnie i wyświetlacz pokazuje błąd ocn
GFF	Gdy jeden z zacisków wyjściowych jest uziemiony, prąd zwarcia jest większy niż wartość ustawienia Pr.
occ	Wykryto zwarcie pomiędzy górnym mostkiem, a dolny mostek modułu IGBT
ocS	Nadmierny prąd lub błąd sprzętowy w wykrywaniu prądu przy zatrzymaniu. Po wystąpieniu ocS należy włączyć zasilanie. Jeśli wystąpi awaria sprzętowa na wyświetlaczu pojawi się cd1, cd2 lub cd3.
ovA	Przepięcie magistrali DC podczas przyspieszania, gdy wystąpi ovA, przemiennik zamyka bramkę wyjścia, silnik pracuje swobodnie, a wyświetlacz pokazuje błąd ovA.
ovd	Nadmierne napięcie magistrali DC podczas zwalniania. Gdy wystąpi przepięcie, napęd na- tychmiast zamyka bramkę wyjścia, silnik pracuje swobodnie, a wyświetlacz wyświetlacz po- kazuje błąd ovd
ovn	Nadmierne napięcie magistrali DC podczas zwalniania. Gdy wystąpi przepięcie, napęd na- tychmiast zamyka bramkę wyjścia, silnik pracuje swobodnie, a wyświetlacz wyświetlacz po- kazuje błąd ovn
ovS	Przepięcie podczas zatrzymywania
LvA	Napięcie magistrali DC jest niższe niż wartość nastawy Pr. 06-00 podczas przyspieszania
Lvd	Napięcie magistrali DC jest niższe niż wartość nastawy Pr. 06-00 podczas przyspieszania
Lvn	Napięcie magistrali DC jest niższe niż wartość nastawy Pr. 06-00 przy stałej prędkości
LvS	Napięcie magistrali DC jest niższe niż wartość Pr. 06-00 wartość przy zatrzymaniu. Awaria sprzętowa wykrywania napięcia
Orp	Zanik fazy zasilania wejściowego
oH1	Temperatura IGBT przekracza poziom ochrony
oH2	Temperatura pojemności przekracza poziom ochrony
tH1o	Bład sprzętowy IGBT w wykrywaniu temperatury

Tabela 28: Lista błędów falownika Delta

Kod błędu	Opis błędu		
tH2o	Błąd sprzętowy w wykrywaniu temperatury kondensatora		
oL	Napęd silnikowy AC wykrywa nadmierny prądu. Zdolność przeciążeniowa utrzymuje się		
	przez 1 minutę gdy przemiennik wysyła 120 % znamionowego prądu wyjściowego prze-		
	miennika		
EoL1	Zabezpieczenie przekaźnika termicznego elektroniki 1. Napęd zatrzymuje się do zatrzyma-		
	nia po aktywacji		
EoL2	Zabezpieczenie przekaźnika termicznego elektroniki 2. Napęd zatrzymuje się do zatrzyma-		
	nia po aktywacji		
oH3	Przegrzanie silnika		
ot1	Gdy prąd wyjściowy przekroczy poziom wykrywania nadmiernego momentu obrotowego		
ot2	Gdy prąd wyjściowy przekroczy poziom wykrywania nadmiernego momentu obrotowego		
uC	Wykrywanie niskiego natężenia prądu		
LMIT	Gdy MIx=45 (limit pracy do przodu) lub MIx=44 (limit pracy do tyłu) podczas pracy, pojawi		
	się błąd LMIT		
cF1	Nie można zaprogramować wewnętrznej pamięci EEPROM		
cF2	Nie można odczytać wewnętrznej pamięci EEPROM		
cd1	Błąd wykrywania prądu fazy U przy włączonym zasilaniu		
cd2	Błąd wykrywania prądu fazy V po włączeniu zasilania		
cd3	Błąd wykrywania prądu fazy W przy włączonym zasilaniu		
Hd0	cc (zacisk prądowy) błąd zabezpieczenia sprzętowego, gdy zasilanie jest włączone		
Hd1	Błąd zabezpieczenia sprzętowego oc przy włączonym zasilaniu		
Hd2	Błąd zabezpieczenia sprzętowego po włączeniu zasilania		
Hd3	Błąd ochrony wykrywania zwarcia occ IGBT, gdy zasilanie jest włączone		
AUE	Błąd automatycznego dostrajania silnika		
AFE	Utrata sprzężenia zwrotnego PID (analogowy sygnał sprzężenia zwrotnego jest ważny tylko		
	gdy funkcja PID jest włączona)		
PGF1	Silnik pracuje w kierunku odwrotnym do kierunku sterowania częstotliwością kierunku ste-		
	rowania		
PGF2	Pr. 10-00 i Pr. 10-02 nie są ustawione w trybie sterowania PG w trybie sterowania PG. Po		
	naciśnięciu przycisku "RUN" wystąpi błąd PGF2		
PGF3	Utyk sprzężenia zwrotnego PG		
PGF4	Błąd poślizgu PG		
ACE	Utrata sygnału na wejściu analogowym (w tym wszystkie sygnały analogowe 4-20mA)		
EF	Błąd zewnętrzny. Gdy napęd zwalnia w oparciu o ustawienie Pr. 07-20, na Keypadzie wy-		
	świetlany jest błąd EF		
EF1	Gdy styk MIx=EF1 jest włączony, wyjście zatrzymuje się natychmiast i wyświetli EF1 na kla-		
	wiaturze. Silnik silnik jest w stanie swobodnego biegu		
bb	Gdy styk MIx=bb jest włączony, wyjście zatrzymuje się natychmiast i wyświetli bb na kla-		
	wiaturze. Silnik pracuje swobodnie		
Pcod	Wprowadzenie błędnego hasła trzy razy z rzędu		
CE1	Polecenie komunikacji jest nieprawidłowe		
CE2	Adres danych jest nieprawidłowy		
CE3	Wartość danych jest nieprawidłowa		
CE4	Dane są zapisywane pod adresem tylko do odczytu		
CE10	Wystąpił limit czasu transmisji MODBUS		

Tabela 28: Lista błędów falownika Delta

Kod błędu	Opis błędu
bF	Tranzystor hamulca napędu silnikowego jest nieprawidłowy (dla modeli z wbudowanym
	tranzystorem hamulca)
ydc	Błąd występuje, gdy Y-∆ przełącza się
dEb	Gdy Pr. 07-13 nie wynosi 0, a zasilanie zostanie nagle wyłączone, powodując, że napięcie
	DCBUS jest niższe niż poziom działania dEb, funkcja dEb zadziała i silnik zatrzyma się. Na-
	stępnie na Keypadzie wyświetlane jest komunikat dEb
oSL	Na podstawie maksymalnego limitu poślizgu ustawionego za pomocą Pr. 10-29, odchylenie
	prędkości jest nieprawidłowe. Gdy napęd silnika przy stałej prędkości, F>H lub F <h przekra-<="" td=""></h>
	cza poziom ustawiony za pomocą Pr. poziom ustawiony za pomocą Pr. 07-29 i przekracza
	czas ustawiony za pomocą Pr. 07-30, pojawi się oSL. oSl występuje tylko w silnikach induk-
	cyjnych. tylko.
ryF	Błąd przełącznika zaworu elektrycznego podczas wykonywania funkcji łagodnego rozruchu
PGF5	Błąd sprzętowy karty PG
SdRv	Kierunek obrotu różni się od kierunku wykrywanego bezczujnikowo
SdOr	Przekroczenie prędkości obrotowej wykrywane bezczujnikowo
SdDe	Duże odchylenie między prędkością obrotową, a poleceniem wykrytym przez bezczujniko-
	wo
WDTT	Błąd Watchdog
STL1	STO1 - błąd wykrywania pętli wewnętrznej SCM1
S1	Awaryjne zatrzymanie dla bezpieczeństwa zwenętrznego
Brk	Błąd zewnętrznego hamulca mechanicznego Zacisk MO jest aktywny, gdy MOx=12, 42, 47
	lub 63, ale MIx=55 nie odbiera sygnału dla działania hamulca mechanicznego w czasie usta-
	wionym w Pr. 02-56.
STO	Aktywna funkcja bezpiecznego wyłączania momentu obrotowego
STL2	Błąd wykrywania pętli wewnętrznej STO2-SCM2
STL3	Wykrywanie pętli wewnętrznej STO1-SCM1 i STO2-SCM2 błąd
OPHL	Utrata fazy wyjściowej
OPHL	V phase output phase loss
OPHL	Strata fazy na wyjściu fazy W
AboF	Linia ABZ wyłączona dla ochrony podczas korzystania z PG02U
UvoF	Linia UVW wyłączona dla ochrony podczas korzystania z PG02U
oL3	Ochrona przed niską częstotliwością i wysokim prądem
RoPd	Zabezpieczenie przed błędem wykrywania pozycji wirnika
Fstp	Keypad wymusił zatrzymanie PLC
TRAP	Awaria procesora
CGdE	Błąd ochrony CANopen
ChbE	Błąd heartbeat CANopen
CbFE	Błąd wyłączenia magistrali CANopen
CIdE	Błąd indeksu CANopen
CAdE	Błąd adresu stacji CANopen (obsługuje tylko 1-127)
CFrE	Błąd pamięci CANopen
ictE	Limit czasu komunikacji wewnętrznej
SfLK	Falownik ma polecenie RUN z częstotliwością wyjściową, ale stały silnik magnetyczny nie
	obraca się
AUE1	Brak błędu prądu sprzężenia zwrotnego, gdy parametr silnika automatycznie wykrywa
AUE2	Błąd zaniku fazy silnika, gdy parametr silnika automatycznie wykrywa

Tabela 28: Lista błędów falownika Delta

Kod błędu	Opis błędu
AUE3	Błąd pomiaru prądu bez obciążenia IO, gdy parametr silnika parametr automatycznie wy-
	krywa
AUE4	Błąd pomiaru indukcyjności upływu Lsigma, gdy parametr silnika automatycznie wykrywa
СВМ	Błąd dopasowania karty kontrolnej

18. Dane techniczne

18.1. Parametry elektryczne

Parametr	Wartość
Napięcie zasilania	24 VAC 50/60 Hz +/-5%
Pobór mocy	Do 10 W
Przekaźniki - maksymalne przełączane napięcie	250 VAC
Maksymalna suma obciążeń grupy przekaźników REL1, 2, 3, 4 (re-	4 A
zystancyjna)	
Maksymalne obciążenie każdego z przekaźników REL5, 6, 7, 8 (re-	3 A
zystancyjne)	
Maksymalne obciążenie przekaźnika REL9 (rezystancyjne)	3 A
Maksymalne obciążenie przekaźników (indukcyjne)	0,5 A
Maksymalny prąd w pętli prądowej	28 mA
Maksymalny pobór prądu z wewnętrznego napięcia odniesienia	250 mA
Wejścia cyfrowe – napięcie minimalne	-0,5 VDC
Wejścia cyfrowe – napięcie maksymalne	24,7 VDC
Wejścia analogowe – napięcie minimalne	-0,5 VDC
Wejścia analogowe – napięcie maksymalne	24,7 VDC

Tabela 29: Lista parametrów elektrycznych

18.2. Parametry mechaniczne

Tabela 30: Parametry mechaniczne

Parametr	Wartość
Wymiary obudowy	176 x 106 x 77 mm
Waga (bez opakowania)	843 g
Montaż	Zaczepy

18.3. Warunki pracy

Tabela 31: Dopuszczalne warunki pracy

Parametr	Wartość
Temperatura pracy	-15 ÷ 50°C
Temperatura przechowywania	-20 ÷ 70°C
Wilgotność względna	10 ÷ 90%, bez kondensacji

MIKROEL®

Rysunek 60: Rysunek obudowy sterownika XAIR Expert

